
뫼스바우어 심포지엄 - 나노 기술 및 응용

논 문 개 요 집

일 시 2005. 2. 22 (화) 소 국민대학교 과학관 최 한국자기학회 국민대학교 스핀양자 뫼스바우어 분광 연구소 국민대학교 스핀트로닉스 연구센터 워

Mössbauer Symposium 2005 Nano-Technology and Applications

The Korean Magnetics Society

Structural, magnetic, and optical studies on normal to inverse spinel phase transition in Fe_xCo_{3-x}O₄ thin films

Kwang Joo Kim^{1*}, Hee Kyung Kim¹, Young Ran Park¹,

Geun Young Ahn², Chul Sung Kim², Jae Yun Park³

¹Department of Physics, Konkuk University, Seoul 143-701, South Korea

²Department of Physics, Kookmin University, Seoul 136-702, South Korea

³Department of Materials Science and Engineering, University of Incheon, Incheon 402-749, South Korea

Phase transition from normal- to inverse-spinel structure has been observed for Fe_xCo_{3-x}O₄ thin films as the Fe composition (x) increases from 0 to 2. The samples were fabricated as thin films by sol-gel method on Si(100) substrates. X-ray diffraction measurements revealed a coexistence of two phases, normal and inverse spinel, for 0.76 $\leq x \leq 0.93$. The normal-spinel phase is dominant for $x \leq 0.55$ while the inverse-spinel phase for $x \ge 1.22$. The cubic lattice constant of the inverse-spinel phase is larger than that of the normal-spinel phase. For both phases the lattice constant increases with increasing x. The Fe_xCo_{3-x}O₄ samples containing the inverse-spinel phase exhibit magnetization that increases with increasing x. X-ray photoelectron spectroscopy measurements revealed that both Fe^{2+} and Fe^{3+} ions exist with similar strength in the x = 0.93 sample. Conversion electron Mössbauer spectra measured on the same sample showed that Fe²⁺ ions prefer the octahedral Co³⁺ sites, indicating the formation of the inverse-spinel phase. Analysis on the measured optical absorption spectra for the samples by spectroscopic ellipsometry indicates the dominance of the normal spinel phase for low x in which Fe³⁺ ions mostly substitute the octahedral sites. For the samples with inverse-spinel phase a crystal-field transition for tetrahedral Fe3+ ion is observed.