한국자기학회 2005년도 임시총회

하계학술연구발표회 및 국제 차세대 HDD 기술워크샵

International Workshop on Next Generation HDD Technology & KMS 2005 Summer Conference

논문개요집

· 일시 : 2005. 6. 1(수) ~ 6. 3(금)

· 장소 : 라마다프라자 제주호텔

· 주최 : 한국자기학회

나노정보소재합성기술단

· 후원 : 한국학술진흥재단

한국과학기술단체<mark>총연합회</mark>

한국과학기술연구원(KIST)

Digests of the International Workshop on Next Generation HDD Technology & KMS 2005 Summer Conference

The Korean Magnetics Society
Fusion Technology Center for Nano-Information Materials, KIST

Room-Temperature Ferromagnetism in Anatase Ti_{1-x}Fe_xO_{2-δ} Thin Films

Kwang Joo Kim*1, Young Ran Park1, Geun Young Ahn2, Chul Sung Kim2, Jae Yun Park3

¹Department of Physics, Konkuk University, Seoul 143-701, South Korea

Incheon 402-749, South Korea

Recently, there have been a large number of investigations on semiconducting oxides that exhibit ferromagnetism with high Curie temperature above 300 K. Such diluted magnetic semiconductors are achieved by doping 3d transition-metal elements such as V, Mn, Fe, Co, and Ni into base oxides such as ZnO, SnO₂, and TiO₂.

In the present work, magnetic and electronic properties of Fe-doped anatase $TiO_{2-\delta}$ thin films grown on $Al_2O_3(0001)$ substrates by a sol-gel method have been investigated by vibrating-sample magnetometry (VSM), conversion electron Mössbauer spectroscopy (CEMS), and Hall effect measurements.

Anatase $Ti_{1-x}Fe_xO_{2-\delta}$ thin films were found to exhibit ferromagnetism at room temperature by VSM. The saturation magnetic moment of the ferromagnetic films are ~2 and ~1.5 μ_B per Fe ion for x = 2.4 and 5.8 at.%, respectively, as shown in Fig. 1. The isomer shifts in CEMS measurements as shown in Fig. 2, are 0.26-0.28 mm/s, indicating a ferric character. The Mössbauer spectra also revealed that Fe^{3+} ions mostly substitute the octahedral Ti^{4+} sites of $Ti_{1-x}Fe_xO_{2-\delta}$. The $Ti_{1-x}Fe_xO_{2-\delta}$ films exhibited poor electrical conductivity with p-type character. The ferromagnetism in the present $Ti_{1-x}Fe_xO_{2-\delta}$ films can be interpreted in terms of a direct ferromagnetic coupling between two neighboring Fe^{3+} ions via an electron trapped in oxygen vacancy [1]. The reduction of the net magnetization by the increase of the Fe content in the film can be explained in terms of an antiferromagnetic superexchange interaction between two neighboring Fe^{3+} ions via O^{2-} ion.

Reference

[1] J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan Appl. Phys. Lett. 84, 1332 (2004).

This work was supported by grant No. R01-2003-000-10293-0 from the Basic Research Program of the Korea Science & Engineering Foundation

²Department of Physics, Kookmin University, Seoul 136-702, South Korea

³Department of Materials Science and Engineering, University of Incheon,

Fig. 1. Room-temperature VSM measurement result of anatase $Ti_{1-x}Fe_xO_{2-\delta}$ (x = 2.4 and 5.8 at.%) films.

Fig. 2. CEMS spectrum of $Ti_{1-x}Fe_xO_{2-\delta}$ (x = 5.8 at.%) film measured at room temperature