한국자기학회 2005년도 정기총회

동계학술연구발표회 및 제2차 아시안포럼

The 2nd Asian Forum on Magnetics & KMS 2005 Winter Conference

논문개요집

·일시: 2005. 12. 8(THU)~10(SAT)

· 장소: 용평리조트(YongPyong Resort)

· 주최 : 한국자기학회(KMS)

· 후원: 한국학술진흥재단(KRF)

한국과학기술단체총연합회(KOFST)

Digests of the 2nd Asian Forum on Magnetics & KMS 2005 Winter Conference

The Korean Magnetics Society

Magnetic properties of Fe doped cupric oxide

Young Ran Park*, Kwang Joo Kim*, Geun Young Ahn**, Chul Sung Kim**, and Jae Yun Park***

* Department of Physics, Konkuk University, Seoul, Korea E-mail: kjkim@konkuk.ac.kr

** Department of Physicss, Kookmin University, Seoul, Korea

*** Department of Materials Science and Engineering, University of Incheon,
Incheonl, Korea

Cupric oxide (CuO) is a semiconductor promising for solar cell fabrication and an antiferromagnet (T_N =230K) crystallizing in a square planar coordination of copper by oxygen in the monoclinic structure. CuO films have been reported to show native p-type conductivity due to Cu vacancies in the structure.

In this work, pure CuO and CuO:Fe (2 at.%) thin film and powder samples were prepared using a sol-gel method. Undoped CuO films exhibited p-type electrical conductivity ($\sim 10^{-2}~\Omega^{-1} \text{cm}^{-1}$) with carrier concentration of $\sim 10^{16}~\text{cm}^{-3}$ while the Fe doped ones insulating. CuO:Fe samples maintained monoclinic structure without any second phase and exhibited ferromagnetism at room temperature by vibrating-sample magnetometry (VSM) with a saturation magnetic moment of $\sim 0.7~\mu_B$ per Fe ion (1300K) as shown in Fig. 1. Li doping into the CuO:Fe films led to an increase of the electrical conductivity. Optical properties of the films have been investigated by spectroscopic ellipsometry. Undoped CuO films were found to have a direct band gap of 1.67 eV at room temperature. The origin of the ferromagnetism has been investigated by Mössbauer spectroscopy.

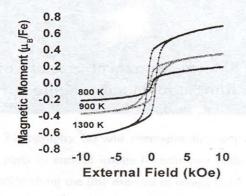


Fig. 1. Room-temperature VSM measurement result of CuO:Fe (2 at.%) powder for varying annealing temperature.