뫼스바우어 & 나노 심포지엄 2006 - 나노 기술 및 응용 # 논문개요집 일 AI. 2006. 1. 19 (목) ● 장 소 국민대학교 과학관 최 한국자기학회 국민대학교 스핀양자 뫼스바우어 분광 연구소 국민대학교 스핀트로닉스 연구센터 ● 후 워 Mössbauer & Nano Symposium 2006 Nano-Technology and Applications The Korean Magnetics Society #### **Pb01** ### Fabrication of Fe₃O₄-based magnetic tunnel junctions by MBE #### system <u>Woochul Kim*</u>, Sam Jin Kim*, Chul Sung Kim*, Kenji Kawaguchi**, and Naoto Koshizaki** *Department of Physics, Kookmin University, **Nanoarchitectonics Research Center, National Institute of Advanced Industrial Science and Technology(AIST), tsukuba, Japan Half-metal materials provide 100 % spin-polarized conductions and it is expected to induce a large tunnel magnetoresistance in magnetic tunnel junctions.[1] Magnetic tunnel junctions using half metallic magnetite (Fe₃O₄) have been fabricated on α-Al₂O₃ (0001) and MgO (100) substrates by a molecular beam epitaxy (MBE) system. We investigated the structure and chemical properties of interfaces in ferromagnet-insulator-ferromagnet (Fe₃O₄/I/Fe, I=MgO, Al₂O₃) tunnel junctions. The Fe₃O₄ quality was examined by reflection high-energy electron diffraction (RHEED), x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometer, atomic force microscopy (AFM), and in situ x-ray photoelectron spectroscopy (XPS). The results of reflection high-energy electron diffraction (RHEED) and x-ray diffraction (XRD) showed the good epitaxial growth of Fe₃O₄ layer with and $P(O_2) = 3 \times 10^{-3}$ Pa. In magnetization measurement of multilayer flat surface at $T_s = 250$ Al/Ag/Fe₃O₄ sample, clear Verway transition indicating stoichiometric Fe₃O₄ is observed at around 120 K. By in situ XPS analysis methods, the Fe $2p_{3/2}$ and Fe $2p_{1/2}$ peak profiles for Fe₃O₄ layer are little changed by overlaying MgO, however, overlaying metal Al for Al₂O₃ barrier make the Fe 2p XPS profile in Fe₃O₄ change drastically. AFM data showed that the Fe₃O₄ surface governs the interface roughness in this Al/Ag/Fe₃O₄/MgO/Fe sample for magnetite-based tunnel junctions. These results suggest the Al/Ag/Fe₃O₄/MgO multilayers available for spin-dependent tunnel junction. [1] P. J. van der Zaag, P. H. Bloemen, J. M. Gaines, R. M. Wolf, P. A. A. van der Heijden, R. J. M. van de Veerdonk, and W. J. M. de Jonge, J. Magn. Magn. Mater. 301, 4768 (2000). This research was sponsored by Japan Society for the Promotion of Science (JSPS) and carried out at AIST.