Investigation of site distribution on iron in spinel FeGa₂O₄ with Mössbauer spectroscopy Bo Ra Myoung*, and Chul Sung Kim Department of Physics, Kookmin University, Seoul, Repulic of Korea; ### 1. INTRODUCTION Spinel structures AB₂O₄(A,B=transitionmetal) have attracted much attention, because of the unprecedented magnetic properties such as spin-glass, colossal magnetoresistance(CMR) effect, metal-insulator transition at low temperature.[1,2] Recently, it has been reported that the cubic spinel FeGa₂O₄ is antiferromagnet with spin glass behavior with disordered spin, atomic short-range-order, incommensurated spin structure at low temperature. Furthermore, FeGa₂O₄ is concurrent with clusters and ferromagnetic spin-ordering below T_f =12K, as superparamagnetic behavior[3,4]. Especially, J.Ghose[5,6] has shown that FeGa₂O₄ is purely inverse [Fe_{0.05}Ga_{0.95}]^A[Fe_{0.95}Ga_{1.05}]^BO₄, whereas FeGa₂O₄ is normal spinel[Fe]^A[Ga₂]^BO₄ from Mössbauer measurements[5]. Then, microscopic magnetic properties are as yet unsolved problems with dependent site distribution of iron. In this paper, we have researched magnetic properties of FeGa₂O₄, arising from magnetic structure-transition, spin-relocation, and site distribution of iron on dependent temperature. #### 2 EXPERIMENT PROCEDURES Synthesis of FeGa₂O₄ sample was done by a standard solid-state reaction method in evacuated 10⁻⁷torr quartz ampoules. In order to obtain homogeneous materials, it was necessary to grind the mixed powders of Fe (99.99%), Fe₂O₃(99.995%),andGa₂O₃(99.99%) and press the powder into pellet before annealing process in evacuated quartz ampoules. A single phase of FeGa₂O₄ was obtained by annealing at 1000°C with nitrogen gas in evacuated quartz ampoules for 4 days. The crystal structure of sample of FeGa₂O₄ was analyzed by using Philips X'Pert diffractometer with Cu *Ka* radiation source. Their magnetic properties were characterized by superconducting quantum interference device (SQUID) magnetometer. The Mössbauer spectra were recorded using a conventional spectrometer of the electromechanical type with a ⁵⁷Co source in a rhodium matrix. The obtained Mössbauer spectra were analyzed by a least-squares fitting program. #### 3. EXPERIMENT RESULTS The X-ray powder diffraction experiment on FeGa₂O₄ was performed at room temperature. The diffraction patterns analyzed showed a single-phased material without any impurities. The crystal structure of FeGa₂O₄ is determined to be an inverse spinel. ## 4. DISCUSSION We conclude that spin-redistribution by distribution of Fe-cations depends on A and B-site with increasing temperature.