
International Symposium on Magnetism and Magnetic Materials 2018

Date Place Organized by Sponsored by

November 21- 23(Wed.-Fri.), 2018 Hotel Nongshim, Busan, Korea The Korean Magnetics Society The Korean Federation of Science and Technology Societies(KOFST)

"This work was supported by the Korean Federation of Science and Technology Societies(KOFST) Grant funded by the Korean Government."

SA08	Poster	High Resolution Current sensor using Differential Planar Hall Resistance Sensor · · 167 Jae Hoon Lee [*] , Sung Joon Kim, Cheol-Gi Kim
SA09	Poster	A study on Electromagnetic-Thermal Interaction Analysis of BLDC Motor applied to EGR Valve System 168 Su-Jeong Lee [*] , Junyoung Chae, Hyo-Sung Choi, Ho-Young Kang, Yun-Sang Jeong, Jun-Young Jo and Sung-Kun Kim
O Sessio	n SM[So	oft-magnetic Materials]
SM01	Poster	Characterization of Ni-Zn ferrite prepared by sol-gel method
SM02	Poster	EMI Shielding Effectiveness of Sputtered NiFe /Cu Multi-layer Thin Film with High Frequency 171 Jung Woo Lee [*] , Jong Hwan Park, Ho Jun Choi, Tae Sung Kim, Jae Chul Roh, Chan Sei Yoo, Ki Hyeon Kim, Dae Seok Suh, Han Young Jeong, Seo Young Chang and Su Jeong Suh [†]
SM03	Poster	Evaluation of microwave complex permeability measurements for magnetic thin films by using a shorted strip line 172 Wonkyu Jang [*] , Joonsik Lee, Ki Hyeon Kim
SM04	Poster	Magnetic properties of $Mn_{2/3-x}Zn_{1/3+x}Fe_2O_4$ spinel ferrites \cdots 174 Eun-Soo Lim [*] , Young-Min Kang [†] , Dong-Young Kim
SM05	Poster	Size Control of FeCo Nanoparticles and Characterization
SM06	Poster	The effect of Al ₂ O ₃ insulation coating on the magnetic properties of Fe powder
SM07	Poster	Characteristics of current transfer dependence of NiO thickness between hybrid high temperature superconductor YBCO thin film and GMR-SV thin film 177 Woo-II Yang, Byeong-Uk Kang, Jong-Gu Choi [*] , Purevdorj Khajidmaa, and Sang-Suk Lee
SM08	Poster	Mössbauer studies of $Ba_{0.5}Sr_{1.5}Ni_2Fe_{12}O_{22}$ Y-type hexaferrite
SM09	Poster	Three-dimensional Magnetic Vortex Structure Transformation
SM10	Poster	Magnetic recoverable Z-scheme Au-CoFe ₂ O ₄ /MoS ₂ catalyst for environmental purification of organic pollutants

O Session SO[Spin orbit coupling and related phenomena]

SO01	Poster	Current-Induced Magnetic Switching with Spin-Orbit Torque in an Interlayer	
		Coupled Junction with Ta Spacer Layer	32
		WY. Kwak [*] , B. K. Cho [†]	

Mössbauer studies of Ba_{0.5}Sr_{1.5}Ni₂Fe₁₂O₂₂ Y-type hexaferrite

Jeonghun Kim^{*}, Chul Sung Kim

Department of Physics, Kookmin University, Seoul 02707, Korea

The Ba_{0.5}Sr_{1.5}Ni₂Fe₁₂O₂₂ polycrystal sample of Y-type hexaferrite was prepared by polymerizable complex method using BaCO₃, SrCO₃, Ni(NO₃)₂·6H₂O, Fe(NO₃)₃·9H₂O as the starting materials. The crystalline structure and phase purity of sample were confirmed X-ray diffractometer (XRD) and the measured XRD pattern was analyzed by using Rietveld refinement method with FULLPROF program. The measurements of magnetic properties were measured by using vibrating sample magnetometer (VSM) and Mössbauer spectrometer at various temperature. From the refined XRD pattern, the prepared sample was found to be rhombohedral structure with space group *R*-3*m* at room temperature and the lattice constants of sample were $a_0 = 5.8306$ Å, $c_0 = 43.256$ Å, V = 1273.45 Å³. To determine the spin transition temperature (T_S) and Curie temperature (T_C), the temperature dependence of the zero-field-cooled magnetization curve was measured under applied 100 Oe at temperature ranging from 4.2 to 750 K. We determined $T_S = 188$ K which the spin structure change from the helimagnet to the ferrimagnet, and $T_C = 677$ K which the spin structure changes from ferrimagnet to paramagnet. The Mössbauer spectra were obtained at temperature ranging from 4.2 to 295 K and fitting for six different sublattices ($3b_{VI}$, $18h_{VI}$, $6c_{IV}$ *, $6c_{VI}$, and $3a_{VI}$). The magnetic hyperfine field and the electric quadrupole splitting of sample have shown abrupt changes around T_S .

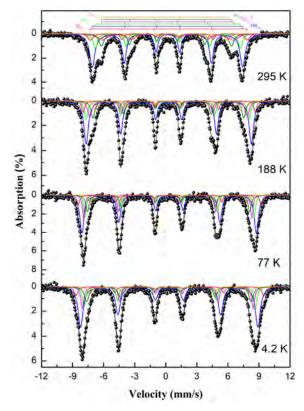


Fig. 1. Mössbauer spectra of Ba_{0.5}Sr_{1.5}Ni₂Fe₁₂O₂₂ at various temperatures from 4.2 to 295 K.