ISPMM/ISAMT2001

International Symposium on Physics of Magnetic Materials

International Symposium on Advanced Magnetic Technologies

Grand Hotel
Taipei, Taiwan
May 13~16, 2001

Hosted By:
Chinese Association for Magnetic Technology, Taiwan
Institute of Physics, Academia Sinica, Taiwan
Opto-Electronics & Systems Labs., ITRI, Taiwan

Sponsored By:
Department of Industry Technology, MOEA, Taiwan
Industrial Development Bureau, MOEA, Taiwan
National Science Council, Taiwan
Ministry of Education, Taiwan
Mössbauer studies of superexchange interactions in Ni$_{0.5}$Cu$_{0.5}$Fe$_2$O$_4$

Woo Chul Kim, Sam Jin Kim, and Chul Sung Kim (Department of Physics, Kookmin University, Seoul 136-702, Korea)

Ni$_{0.5}$Cu$_{0.5}$Fe$_2$O$_4$ has been studied by Mössbauer spectroscopy and x-ray diffraction. The crystal is found to have a cubic spinel structure with the lattice constants $a_0 = 8.370 \pm 0.005$ Å. Mössbauer spectra of Ni$_{0.5}$Cu$_{0.5}$Fe$_2$O$_4$ were obtained at various absorber temperatures from 13 to 820 K. The iron ions at both A (tetrahedral) and B (octahedral) sites are found to be in ferric high-spin states. Its Néel temperature T_N is found to be 820 ± 3 K. The Debye temperatures for the A and B sites are found to be $\Theta_A = 417 \pm 5$ K and $\Theta_B = 331 \pm 5$ K, respectively. The temperature dependence of the magnetic hyperfine fields at 57Fe nuclei at the tetrahedral (A) and octahedral (B) sites is analyzed by the Néel theory of ferrimagnetism. The intersublattice A-O-B and intrasublattice A-O-A superexchange interactions are found to be antiferromagnetic with their strength of $J_{A-B} = -25.8$ k_B and $J_{A-A} = -10.5$ k_B, respectively, while intrasublattice B-O-B superexchange interaction is ferromagnetic with its strength $J_{B-B} = 12.5$ k_B.

![Hyperfine Field vs Reduced Temperature](image)

Figure 1. The reduced hyperfine field as a function of the reduced temperature T/T_N. (Solid circle and square represent reduced hyperfine fields of A and B site, respectively. Solid line represents theoretical value.)

Presentation: Poster

Subject category code: A. Physics of Magnetic Materials, 6. Magnetism and Magnetic Analysis

Name: Woo Chul Kim

Institution: Department of Physics, Kookmin University

Address: 861-1, Chongnung-dong, Songbuk-gu, Seoul 136-702, Korea

Phone: +82-2-910-4769

Fax: +82-2-910-4728