JOINT EUROPEAN MAGNETIC SYMPOSIA
EMMA–MRM
Grenoble – France – August 28th to September 1st, 2001

ABSTRACTS
EFFECT OF THERMAL FLUCTUATION ON READ / WRITE PROPERTIES OF AFC RECORDING MEDIA

Y. Nakatani¹, N. Hayashi², Y. Uesaka³, H. Fukushima³
¹ University of Electro-Communications, Chofu-shi, Tokyo, 182-8585, Japan
² Nihon University, Kohriyama, Fukushima, 963, Japan
³ Honda-cho, Chiba-shi, Chiba, 266, Japan

Recently anisofemroically coupled (AFC) recording media have been proposed to decrease media noise and improve thermal stability. The effect of the material constants of the underlayer on thermal stability is investigated in this paper by micromagnetic computer simulation. The calculation conditions are the same as used in Ref. 1. The change in the magnetization structure was obtained by the Monte Carlo method with the initial state obtained in Ref. 1.

The readout signal just after recording was observed to increase by about 30% in the largest case. This is due to the change in the magnetization structure of the underlayer which occurs immediately after recording because of thermal fluctuation. However, as the media noise also increases, the SNR hardly changes during this period. Thermal stability was examined by the change in the SNR with time. The decrease in the SNR was delayed about 100 times the single layer case. The best combination of material constants was found to be A=0.1×10⁻⁶ erg/cm, Ms=600 emu/cm², and Hc=2 kOe. This is considered due to the tendency of the magnetic moments of the underlayer to orient antiparallel to those of the recording layer affected by both inter-layer exchange coupling and thermal fluctuation, which improves thermal stability through magnetostatic coupling.

1 Y. Nakatani, et al., JEMS 2001 abstract.

SMALL ANGLE NEUTRON SCATTERING STUDIES OF LONGITUDINAL MAGNETIC RECORDING MEDIA

S.L. Lee¹, F.Y. Ogrin⁵, C. Oates¹, T. Thomson²
¹ School of Physics and Astronomy, University of St. Andrews, KY16 9SS, UK
² Seagate, 47010 Kato Road, Fremont, CA 94538, USA

We have used small angle neutron scattering (SANS) to study the microscopic magnetisation of CoCrPt/²a based longitudinal recording media. In contrast to previously reported studies in this area, which have used unrealistic thick magnetic layers, we have made use of samples of actual recording media. By utilising the anisotropic neutron magnetic scattering arising from the magnetised grains, we have been able to separate the magnetic scattering from the nuclear contribution. It is thus possible to comment on the size, shape and local distribution of the magnetisation within the grains. Due to the particularly narrow grain size distribution of some of the systems studied, this information can be remarkably detailed. We will present data on a range of systems varying in both grain size and grain size distribution.

1 Now at IBM - Almaden Research Center, 650 Harry Road, San Jose, CA 95120

CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES OF CO-FERRITE FILMS

K. Fujiiwa¹, S. Watanabe², K. Moro³, M. Chiba⁴, M. Sasaki⁵ and Y. Koizumi⁶
¹ Course of Materials Science and Technology, Graduate School, Tokai Univ., 317 Nishino Namazu Shizuoka 410-0355, Japan
² Department of Materials Science and Technology, Tokai Univ., 317 Nishino Namazu Shizuoka 410-0355, Japan
³ Course of Applied Science, Graduate School, Tokai Univ., 1117 Itakamane, Hiratsuka, Kanagawa 259-1292, Japan.

Amorphous rare earth-transition metal like the compound of Tb-Fe-Co system is used for the recording layer of the high-density magneto optical medium. We have studied the recording layer of Tb-Fe-Co system. But the recording layer is easily scratched and is sensible to oxidation. Therefore, the protection film is indispensable. And it is the multilayered structure. Therefore, the magneto optical medium takes time to produce as a multilayered structure. Another hand, the oxide magneto optical recording medium is excellent in anti-corrosion, is chemically stable and is hard. Therefore, for it, a protection film does not necessity. And it has the high permeability of light. Making light interfere in it can efficiently increase the Faraday rotation angle. Therefore, a dielectric film is not needed.

This study used reactive rf-sputtering equipment with a cobalt and an iron-coupling targets. The forming of the reaction with oxygen gas produces the iron oxide oxide films. The crystallographic structure was evaluated by an X-ray diffraction. The magnetic anisotropy was measured by a vibrating sample magnetometer. As a result from an XRD measurements, these were almost single-phase Co-ferrite thin films, which were prepared under the O₂ partial pressure regions from 5 to 60%.


MAGNETIC PROPERTIES OF BaₓSr₁₋ₓFe₁₂O₁₉ GROWN BY A SOL-GEr METHOD

Sung Yong An¹, Sang Won Lee¹, Seung Wha Lee¹, and Chal Sung Kim¹
¹ Dept. of Physics, Kookmin University, Seoul 136-702, Korea
² Dept. of Electronics Engineering, Chungju National University, Chungju 380-702, Korea

BaₓSr₁₋ₓFe₁₂O₁₉ were prepared by a sol-gel method. Apart from the advantage of low temperature processing a sol-gel route makes it possible to obtain nanoparticle materials. Magnetic and structural properties of BaₓSr₁₋ₓFe₁₂O₁₉ (x=0, 0.25, 0.5, 0.75, and 1.0) were characterized by SEM, Mössbauer spectroscopy, x-ray diffractometry (XRD), and vibrating sample magnetometry (VSM). The result of XRD measurements shows that the a and c lattice parameters decrease with increasing x from a=5.858 Å and c=23.215 Å for x=0.0, to a=5.889 Å and c=23.050 Å for x=1.0. The Mössbauer spectra of BaₓSr₁₋ₓFe₁₂O₁₉ have been taken at various temperatures from 15 to 800 K, and each spectra for a temperature below the Curie temperature (Tc=740 K) was fitted with five subpeaks of Fe sites in the structure (δf, 2a, 4f₁, 12b, 2b). The area fractions of the subpeaks at 15 K were 16.7, 9.0, 16.0, 50.0, and 8.3 %, respectively. The 2b site had a very large quadrupole splitting. The isomer shifts indicated that the valence state of the Fe ions was ferric (Fe³⁺). The saturation magnetization Ms was 55 emu/g, and coercivity Hc was 5.1 kOe at room temperature under an applied field of 15 kOe. This value seems to be suitable for high density recording media.

1 Now at IBM - Almaden Research Center, 650 Harry Road, San Jose, CA 95120