Bilbao, 5-7 September 2001

Soft Magnetic Materials Conference

ORGANIZED BY THE UNIVERSITY OF THE BASQUE COUNTRY Universidad del Pais Vasco / Euskal Herriko Unibertsitatea

BOOK OF ABSTRACTS

Anisotropic hyperfine field fluctuation in Ba₂FeMoO₆

Sung Baek Kim1, Bo Wha Lee2, and Chul Sung Kim1,

Department of Physics, Kookmin University, Seoul 136-702, Korea,
Department of Physics, Hankuk Univ. of Foreign Studies, Yongin, Kyungki 449-791,
Korea

The double perovskite Ba₂FeMoO₆ has been studied by Mössbauer technique, x-ray diffraction, and vibrating sample magnetometry. A single phase of the polycrystalline Ba₂FeMoO₆ powder has been prepared by a solid-state reaction method, and chemical composition of the sample was confirmed to be stoichiometric by Rutherford backscattering spectrometer(RBS) analysis. The structure is found to be cubic with lattice constant $a_0 = 8.0747$ Å. The Magnetoresistance magnitude ($\Delta \rho/\rho_0$) was 18.83 % and 2.96 %, at 77 K and 300 K under the applied field with 1 T. The saturation magnetization was 3.7 μ_B and 2.16 μ_B per formula unit, at 77 K and 300 K, respectively. Mössbauer spectra measurements of the Ba₂FeMoO₆ have been taken at various temperatures ranging from 18 to 345 K. As the temperature increases toward to the Curie temperature, $T_{\rm C}$ = 345 K, Mössbauer spectra show the line broadening and 1, 6 and 3, 4 line-with difference beause of anisotropic hyperfine field fluctuation. The anisotropic field fluctuation of +H (P₊ = 0.85) was great than -H (P₋ = 0.15). We also calculated frequency factor and anisotropy energy with values of $6.04 \Gamma/h$ and 76.8 erg/cm^3 , respectively, using the relatively accurate data for T = 230 K which is associated with the large line broadening.