Bilbao, 5-7 September 2001

15th

Soft Magnetic Materials Conference

ORGANIZED BY THE UNIVERSITY OF THE BASQUE COUNTRY
Universidad del Pais Vasco / Euskal Herriko Unibertsitatea

BOOK
OF
ABSTRACTS

Recognized by the
European Physical Society
Anisotropic hyperfine field fluctuation in Ba$_2$FeMoO$_6$

Sung Baek Kim1, Bo Wha Lee2, and Chul Sung Kim1,

1Department of Physics, Kookmin University, Seoul 136-702, Korea,
2Department of Physics, Hankuk Univ. of Foreign Studies, Yongin, Kyungki 449-791, Korea

The double perovskite Ba$_2$FeMoO$_6$ has been studied by Mössbauer technique, x-ray diffraction, and vibrating sample magnetometry. A single phase of the polycrystalline Ba$_2$FeMoO$_6$ powder has been prepared by a solid-state reaction method, and chemical composition of the sample was confirmed to be stoichiometric by Rutherford backscattering spectrometer (RBS) analysis. The structure is found to be cubic with lattice constant $a_0 = 8.0747$ Å. The Magnetoresistance magnitude ($\Delta \rho /\rho_0$) was 18.83 % and 2.96 %, at 77 K and 300 K under the applied field with 1 T. The saturation magnetization was 3.7 μ_B and 2.16 μ_B per formula unit, at 77 K and 300 K, respectively. Mössbauer spectra measurements of the Ba$_2$FeMoO$_6$ have been taken at various temperatures ranging from 18 to 345 K. As the temperature increases toward to the Curie temperature, $T_C = 345$ K, Mössbauer spectra show the line broadening and 1, 6 and 3, 4 line-with difference because of anisotropic hyperfine field fluctuation. The anisotropic field fluctuation of $+H$ ($P_+ = 0.85$) was greater than $-H$ ($P_- = 0.15$). We also calculated frequency factor and anisotropy energy with values of 6.04 Γ/h and 76.8 erg/cm3, respectively, using the relatively accurate data for $T = 230$ K which is associated with the large line broadening.