ICM 2003 ROMa, staly . july 27 - August 1 . 2003 Incorporating The Symposium on Strongly Correlated Electron Systems abstracts ## 4R-pm-03— ANISOTROPIC HYPERFINE FIELD FLUCTUATION IN La_{0.67}Pb_{0.33}Mn_{1-x}⁵⁷Fe_xO₃ Hi Min Lee, Sam Jin Kim, In-Bo Shim, Chul Sung Kim Dept. of Physics, Kookmin University, Seoul 136-702, Korea Observations of the colosscal magnetoresistance (CMR) and other intricate physical phenomena in the perovskite manganite oxides R_{1-x}A_xMnO₃ (R= La, Nd, Pr, Sn, Y; A= Ca, Sr, Ba, Pb) have triggered renewed attention to this class of materials. Polycrystalline samples of La_{0.67}Pb_{0.33}Mn_{0.99}⁵⁷Fe_{0.01}O₃ have been prepared with the aim of investigating the influence of the presence of the metal ⁵⁷Fe. Their magnetic and crystallographic properties are studied using Mössbauer spectroscopy and neutron dffraction. The structure of $La_{0.67}Pb_{0.33}MnO_3$ was found to be rhombohedral, with lattice constants $a_0 =$ 5.4932 Å and $\alpha = 60.207$ °. The lattice constants a_0 of the samples became almost similar with increasing ⁵⁷Fe contents (0.01 $\leq x \leq$ 0.05). However, the lattice constants α increased. Increased ⁵⁷Fe contents dropped rapidly the magnetization and the Curie temperature (T_c) . This results show that Fe favours an antiferromagnetic coupling in the Mn-O layer, and finally it leads to weaking of the ferromagnetic double exchange coupling. Also our magnitic structure neutron diffraction refinements support above results. Mössbauer spectra of La_{0.67}Pb_{0.33}Mn_{0.99}⁵⁷Fe_{0.01}O₃ were taken at various temperatures ranging from 14 to 350 K. As the temperature increased towards T_c = 340 K, line broadening and 1, 6 and 3, 4 line width differences occurred because of anisotropic hyperfine field fluctuation. The anisotropic field fluctuation of +H $(P_{+}=0.83)$ was greater than -H $(P_{-}=0.17)$. We also calculated the frequency factor and the anisotropy energy as 49.34 Γ/\hbar and 383 erg/cm³, respectively, using the relatively accurate data for T=130 K that is associated with the large line broadening.