Study of Mössbauer and neutron diffraction for La$_{0.67}$Pb$_{0.33}$Mn$_{1-x}$Fe$_x$O$_3$

Lee H.M. 1, Kim S.B. 2, Kim S.J. 1, Shim I.B. 1, Kim C.S. 1
1 Dept. of Physics, Kookmin University, Seoul 136-702, Korea 2 Neutron Physics Department, KAERI, Daejeon 305-600, Korea

Observations of the colossal magnetoresistance (CMR) and other intricate physical phenomena in the perovskite manganite oxides R$_{1-x}$A$_x$MnO$_3$ (R = La, Nd, Pr, Sn, Y; A = Ca, Sr, Ba, Pb) have triggered renewed attention to this class of materials[1,2]. Polycrystalline samples of La$_{0.67}$Pb$_{0.33}$Mn$_{0.99}$Fe$_{0.01}$O$_3$ have been prepared with the aim of investigating the influence of the presence of the metal 57Fe. Their magnetic and crystallographic properties are studied using Mössbauer spectroscopy and neutron diffraction. The structure of La$_{0.67}$Pb$_{0.33}$MnO$_3$ was found to be rhombohedral, with lattice constants $a_0 = 5.4932$ Å and $\alpha = 60.207$ °. The lattice constants a_0 of the samples became almost similar with increasing 57Fe contents ($0.01 \leq x \leq 0.05$). However, the lattice constants α increased. Increased 57Fe contents dropped rapidly the magnetization and the Curie temperature (T_C). This results show that Fe favours an antiferromagnetic coupling in the Mn-O layer, and finally it leads to weakening of the ferromagnetic double exchange coupling. Also our magnitic structure neutron diffraction refinements support above results. Mössbauer spectra of La$_{0.67}$Pb$_{0.33}$Mn$_{0.99}$Fe$_{0.01}$O$_3$ were taken at various temperatures ranging from 14 to 350 K. As the temperature increased towards (T_C) = 340 K, line broadening and 1, 6 and 3, 4 line width differences occurred because of anisotropic hyperfine field fluctuation. The anisotropic field fluctuation of $+H$ ($P_+ = 0.83$) was greater than H ($P_- = 0.17$). We also calculated the frequency factor and the anisotropy energy as 49.34 Γ/\hbar and 383 erg/cm3, respectively, using the relatively accurate data for $T = 130$ K that is associated with the large line broadening.