Magnetic Properties and Superexchange Interactions in Co-In Ferrite.

Seung Wha Lee1, Sung Yong An2, Sam Jin Kim3, Sang Won Lee3, and Chun Sang Kim3
(1) Department of Electronic Engineering, Chungju National University, Chungju 380-702, Korea
(2) Department of Physics, Colorado State University, Ft. Collins, CO 80523, USA
(3) Department of Physics, Kookmin University, Seoul 136-702, Korea
sewlee@mail.chungju.ac.kr

Co-In has been studied with Mössbauer spectroscopy, X-ray diffractometry (XRD), and vibrating sample magnetometer (VSM). The crystal structure for this system is spinel structure, and the lattice constant is in accord with Vegard’s law. The Mössbauer spectra consist of two six-line patterns corresponding to Fe3+ at the tetrahedral (A) and octahedral (B) sites. The Néel temperature of CoFe1.9Sn0.1O4 was TN = 765 ± 3 K. Debye temperature for the A and B sites of CoFe1.9Sn0.1O4 is found to be A = 664 ± 5 K and B = 207 ± 5 K, respectively. The temperature dependence of the magnetic hyperfine fields at 57Fe nuclei at the tetrahedral(A) and octahedral(B) sites is analyzed by the Néel theory of ferrimagnetism and calculate superexchange integral parameters. The intersublattice A-O-B and intersublattice A-O-A superexchange interactions of CoFe1.9Sn0.1O4 are found to be antiferromagnetic with their strength of JA-B=14.7 kJ and JA-A=3.6 kJ, respectively, while intrasublattice B-O-B superexchange interaction is ferromagnetic with its strength IB-B=7.4 kJ. The VSM data showed that the saturation magnetization decreased with increasing x from about 83.7 emu/g for x=0.1 to 63.6 emu/g for x=0.5.