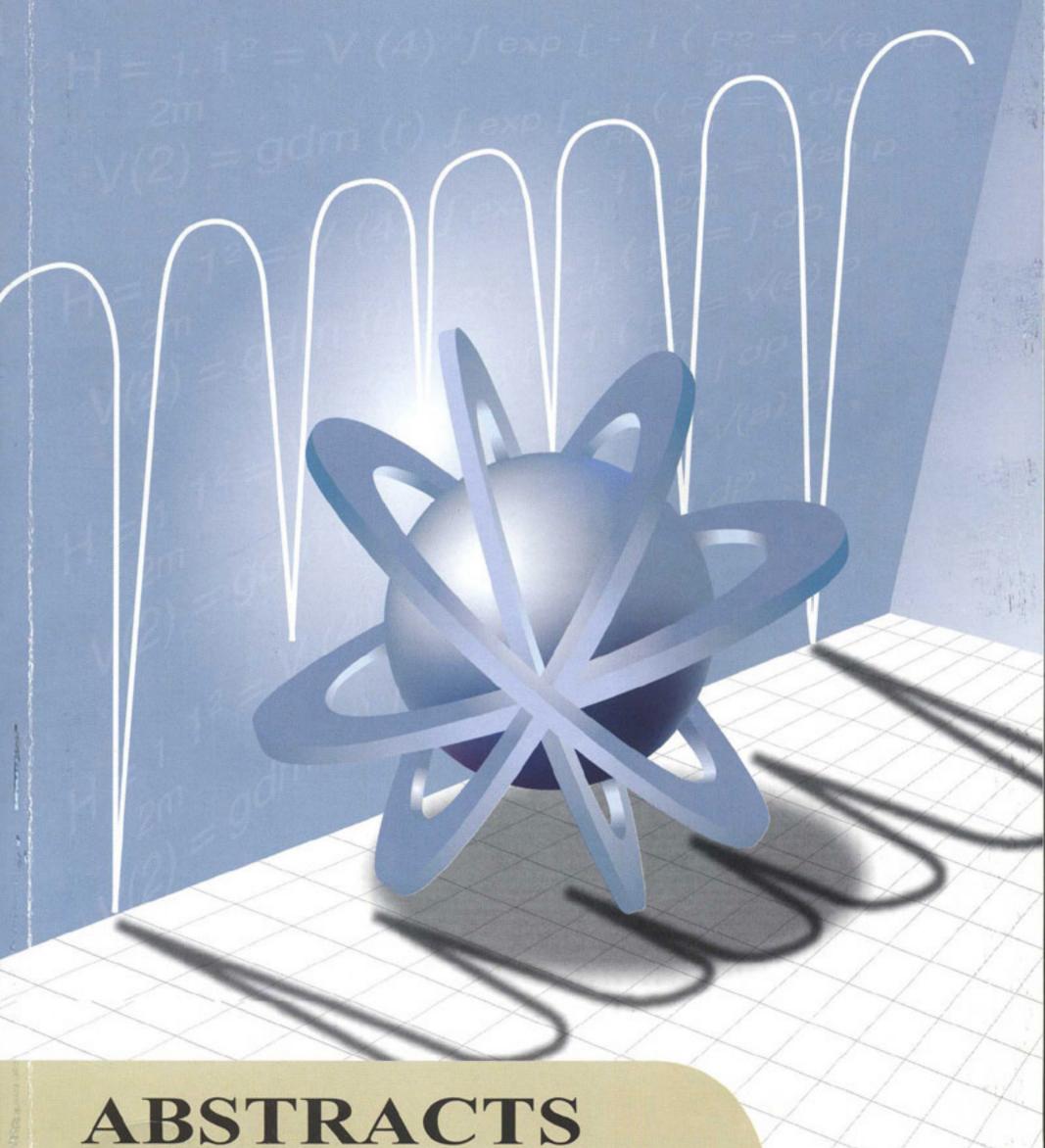
Sultan Qaboos University College of Science



جامعة السلطــان قابــوس كليــــة العلـــوم

International Conference on the Applications of the Mössbauer Effect 21 - 25 September 2003 - Muscat

المؤتمر العالمي لتطبيقات ظاهرة الموسباور ۲۱ - ۲۰ سبتمبر ۲۰۰۳م سلطنة عمان - مسقط

Mössbauer and neutron diffraction studies on Co-Al ferrite

Chul Sung Kim^a and Sam Jin Kim^a

"Department of Physics, Kookmin University, Seoul, 136-702, Korea cskim@phys.kookmin.ac.kr

Al substituted $CoAl_xFe_{1-x}O_4$ (x=0.1, 0.2, 0.3, and 0.5) have been studied with x-ray and neutron diffraction, Mössbauer spectroscopy and magnetization measurements. Neutron diffraction at 10 K for $CoAl_{0.1}Fe_{1.9}O_4$ revealed a cubic spinel structure of ferrimagnetic long range ordering, with magnetic moments of $Fe^{3+}(A)(-4.18 \,\mu_B)$, $Fe^{3+}(B)(4.81 \,\mu_B)$, $Co^{2+}(B)(2.99 \,\mu_B)$, respectively. Mössbauer data were collected in the temperature range of 14-850 K. The temperature dependence of the magnetic hyperfine field in ^{57}Fe nuclei at the tetrahedral (A) and octahedral (B) sites was analyzed based on the Néel theory of magnetism. For the sample $CoAl_{0.1}Fe_{1.9}O_4$, the intersublattice A-B interaction and intrasublattice A-A superexchange interaction were antiferromagnetic with strengths of $J_{A-B} = -23.3 \, k_B$ and $J_{A-A} = -17.6 \, k_B$, respectively, while the intrasublattice B-B superexchange interaction was found to be ferromagnetic with a strength of $J_{B-B} = 5.5 \, k_B$. With increasing Al substitution the A-B and B-B interaction decreased but the A-A interaction increased.

It is interpreted that the reduction of magnetic moment in Fe³⁺(A) and a noticeable strength of the A-A interaction are closely related to the covalency effects.