ISAMT'03

International Symposium on Advanced Magnetic Technologies

Institute of Physics, Academia Sinica, Taipei
November 13~16, 2003

Hosted by
Taiwan Association for Magnetic Technology, Hsinchu
Institute of Physics, Academia Sinica, Taipei
Opto-Electronics & Systems Labs., ITRI, Hsinchu

Sponsored by
Department of Industry Technology, MOEA, Taiwan
National Science Council, Taiwan

Program
MÖSSBAUER STUDIES OF FERROMAGNETISM IN Fe-DOPED ZnO MAGNETIC SEMICONDUCTOR

Geun Young Ahn, Seung-Iel Park, In-Bo Shim, and Chul Sung Kim
(Department of Physics, Kookmin University, Seoul 136-702, Korea)

$\text{Zn}_{1-x}\text{Fe}_x\text{O}$ ($x=0.01, 0.02, 0.03$) compounds were fabricated using the solid-state reaction method. All samples were annealed in Ar atmosphere at 1200 °C during 6 hours. The crystal structure and magnetic properties of the $\text{Zn}_{1-x}\text{Fe}_x\text{O}$ ($x=0.01, 0.02, 0.03$) were studied using x-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. X-ray diffraction patterns showed a single phase, without any segregation of Fe. The lattice constants increased as the Fe concentration increased. The crystal structure of the $\text{Zn}_{0.97}\text{Fe}_{0.03}\text{O}$ was determined to be hexagonal structure (space group : $P\bar{6}m2$) at room temperature with the lattice constants of $a_0 = 3.252$ Å and $c_0 = 5.205$ Å. In order to determine magnetic behavior and ionic state of the doped transition metal (^{57}Fe) in ZnO, we carried out Mössbauer measurements at various temperatures ranging from 13 to 295 K. Mössbauer spectra for $\text{Zn}_{0.97}\text{Fe}_{0.03}\text{O}$ at 13 K have shown the ferromagnetic phase (sextet) and paramagnetic phase (doublet), but the only paramagnetic phase (doublet) is seen at 295 K, as shown in Fig. 1. Isomer-shift value for the ferromagnetic phase was found to be 0.502 mm/s, which was consistent with the Fe$^{2+}$ ion state. The hysteresis loop at 40 K for $\text{Zn}_{0.97}\text{Fe}_{0.03}\text{O}$ indicated the coexistence of ferromagnetic and paramagnetic phases.

![Graph showing Mössbauer spectra at 295 K and 13 K](image)

Chul Sung Kim
Kookmin University
861-1, Chongmung-Dong, Songbuk, Seoul 136-702, Korea
E-mail : eskim@phys.kookmin.ac.kr
Tel : +82-2-910-4752
Fax : +82-2-910-4728