ISAMT / SOMMA 2005

International Symposium on Spintronics and Advanced Magnetic Technologies
and International Symposium on Magnetic Materials and Applications 2005

Grand Hotel Taipei, Taiwan August 24-27, 2005

Hosted By:
Taiwan Association for Magnetic Technology, Taiwan
Research Center for Advanced Magnetic Materials, CNU, Korea
Institute of Physics, Academia Sinica, Taipei, Taiwan
Opto-Electronics & Systems Labs., ITRI, Hsinchu, Taiwan
Taiwan Spin Reach Center, Taiwan

Sponsored By:
Department of Industry Technology, MOEA, Taiwan
National Science Council, Taiwan
The Physical Society of Republic of China, Taiwan

Program
MÖSSBAUER STUDIES FOR La-Co SUBSTITUTED STRONTIUM FERRITE

Dong Hyeok Choi, Sang Won Lee, In-Bo Shim, and Chul Sung Kim (Kookmin University, Korea)

La-Co substituted Sr-ferrite \(((\text{La-Co})_x\text{Sr}_{1-x}\text{Fe}_{12-x}\text{O}_{19})\) \((x = 0.0 \sim 0.4)\) powders synthesized by sol-gel process were investigated magnetic properties. The crystalline structures were characterized by x-ray diffractometer (XRD), and magnetic properties were measured by vibrating sample magnetometer (VSM) and Mössbauer spectrometer. The crystalline structure of \(((\text{La-Co})_x\text{Sr}_{1-x}\text{Fe}_{12-x}\text{O}_{19})\) \((x = 0.0 \sim 0.4)\) was single M-type hexagonal phase. Magnetization under an applied maximum field of 15 kOe was measured 63.9 emu/g for \(x = 0.0\), and decreased gradually with increasing \(x\). Coercivity, \(H_c\) was measured 6,256 Oe for \(x = 0.0\), and then increased up to 7,462 Oe of maximum value for \(x = 0.2\), and decreased over \(x = 0.2\). We studied magnetization and coercivity with La-Co substituted strontium ferrite by Mössbauer spectroscopy. As substituted La-Co ions on the iron site, Mössbauer spectra were shown that the relative intensities of 4f, 12k sites were obviously decreased.

* This research was performed for the Hydrogen Energy R&D Program, funded by the Ministry of Science and Technology of Korea.

Oral Poster Invited Talk

Category Code : 5. Hard Magnets & Applications

Corresponding Author :
Chul Sung Kim
861-1, Changnung, Department of Physics, Kookmin University, Seoul, Korea
E-mail : eskim@phys.kookmin.ac.kr
Tel : +82-2-910-4752
Fax : +82-2-910-5170