ISAMT / SOMMA 2005

International Symposium on Spintronics and Advanced Magnetic Technologies and International Symposium on Magnetic Materials and Applications 2005

Grand Hotel Taipei, Taiwan August 24-27, 2005

Hosted By:
Taiwan Association for Magnetic Technology, Taiwan
Research Center for Advanced Magnetic Materials, CNU, Korea
Institute of Physics, Academia Sinica, Taipei, Taiwan
Opto-Electronics & Systems Labs., ITRI, Hsinchu, Taiwan
Taiwan Spin Reach Center, Taiwan

Sponsored By:
Department of Industry Technology, MOEA, Taiwan
National Science Council, Taiwan
The Physical Society of Republic of China, Taiwan

Program
FERROMAGNETIC PROPERTIES OF ANATASE Ti$_{1-x}$Fe$_x$O$_{2.8}$ THIN FILMS GROWN BY SOL-GEL METHOD

Kwang Joo Kim, Young Ran Park (Konkuk University, Seoul, South Korea)
Geun Young Ahn, Chul Sung Kim (Kookmin University, Seoul, South Korea)
Jae Yun Park (University of Incheon, Incheon, South Korea)

Magnetic and electronic properties of Fe-doped anatase TiO$_{2.8}$ thin films grown on Al$_2$O$_3$(0001) substrates by a sol-gel method have been investigated by vibrating-sample magnetometry (VSM), conversion electron Mössbauer spectroscopy (CEMS), and Hall effect measurements. Anatase Ti$_{1-x}$Fe$_x$O$_{2.8}$ thin films were found to exhibit ferromagnetism at room temperature by VSM. The saturation magnetic moment of the ferromagnetic films are \sim2 and \sim1.5 μ_B per Fe ion for x = 2.4 and 5.8 at.%, respectively. The isomer shifts in CEMS measurements are 0.26-0.28 mm/s, indicating a ferric character. The Mössbauer spectra also revealed that Fe$^{3+}$ ions mostly substitute the octahedral Ti$^{4+}$ sites of Ti$_{1-x}$Fe$_x$O$_{2.8}$. The Ti$_{1-x}$Fe$_x$O$_{2.8}$ films exhibited poor electrical conductivity with p-type character. The ferromagnetism in the present Ti$_{1-x}$Fe$_x$O$_{2.8}$ films can be interpreted in terms of a direct ferromagnetic coupling between two neighboring Fe$^{3+}$ ions via an electron trapped in oxygen vacancy [1]. The reduction of the net magnetization by the increase of the Fe content in the film can be explained in terms of an antiferromagnetic superexchange interaction between two neighboring Fe$^{3+}$ ions via O$^{2-}$ ion.

* This work was supported by grant No. R01-2003-000-10293-0 from the Basic Research Program of the Korea Science & Engineering Foundation.