ICAME 2005

SEPTEMBER 5-9, 2005 MONTPELLIER FRANCE

Programme and Abstracts

International Conference on the Applications of the Mössbauer Effect

LE CORUM Conference Centre

Esplanade Charles de Gaulle Montpellier, France

A STUDY OF THE EFFECTS OF Fe IN TiO2-8 THIN FILMS

Kwang Joo Kim¹, Young Ran Park¹, Geun Young Ahn², Chul Sung Kim², Jae Yun Park,³

¹Department of Physics, Konkuk University, Seoul 143-701, South Korea
²Department of Physics, Kookmin University, Seoul 136-702, South Korea
³Department of Materials Science and Engineering, University of Incheon, Incheon 402-749, South Korea

We have investigated Fe-doped TiO_{2-δ} thin films grown by sol-gel method on Al₂O₃(0001) substrates by X-ray diffraction, Hall effect measurement, vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy and conversion electron Mössbauer spectroscopy (CEMS). The films have been found to be transparent ferromagnets at room temperature. The present anatase and rutile Fe-doped TiO2-δ thin films exhibited p-type electrical conductivity while the undoped film n-type conductivity. As shown in Fig. 1, anomalous magnetic moments were observed for highly resistive Fe-doped anatase TiO2-8 samples at room temperature with the saturation magnetic moment of ~2 μ_B/Fe and ~1.5 μ_B/Fe for 2.4- and 5.8-at.% Fe, respectively. This room-temperature ferromagnetism is explicable with a direct ferromagnetic coupling between two Fe3+ ions via trapped electron in oxygen vacancy. XPS and CEMS measurements on the Fe-doped TiO_{2-δ} films reveal that Fe ions have Fe3+ ionic valence mostly, substituting the octahedral sites of TiO2-8. CEMS spectra on the TiO_{2-δ}:Fe films also reveal the change of the magnetic properties with Fe composition and thickness of the films as shown in Fig. 2.

* This work was supported by grant No. R01-2003-000-10293-0 from the Basic Research Program of the Korea Science & Engineering Foundation

- [1] N. H. Hong, J. Sakai, and A. Hassini, Appl. Phys. Lett. **84**, (2004) 2602.
- [2] T. Droubay, S. M. Heald, V. Shutthanandan, S. Thevuthasan, S. A. Chambers, and J. Osterwalder, J. Appl. Phys. 97, (2005) 46103.

Figure 1. Hysteresis curves of anatase $Fe_xTi_{1-x}O_{2-\delta}$ (x = 2.4 and 5.8 at.%) films.

Figure 2. CEMS spectra of $Fe_xTi_{1-x}O_{2-\delta}$ film (x=5.8 at.%).