
Conference Programme and Book of Abstracts

organized by

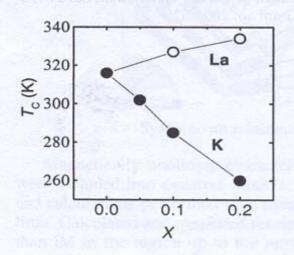
Slovak University of Technology, Faculty of Electrical Engineering and Information Technology

and

Slovak Academy of Science, Institute of Physics and Institute of Experimental Physics

Bratislava, Slovakia 7 - 9 September 2005

CARRIER DOPING DEPENDENCE OF T_c IN DOUBLE PEROVSKITES A₂FeMoO₆ (A = Sr AND Ba)


J. Kim - C. S. Kim* - B. W. Lee

Department of Physics, Hankuk University of Foreign Studies, Yongin, Kyungki 449-791, Korea, *Department of Physics, Kookmin University, Seoul 136-702, Korea

We have studied effects of the carrier doping on the magnetic transition of double perovskites A_2FeMoO_6 (A = Sr and Ba). The substitution of La^{3+} (or K^+) in A_2FeMoO_6 changes the average ionic radius ($< r_A >$) without distorting the crystal symmetry and the valence state of Fe/Mo ions via carrier doping.

Polycrystalline $A_{2-x}B_x$ FeMoO₆ (B = La and K; x = 0, 0.1 and 0.2) samples were prepared by standard solid-state reaction. X-ray diffraction patterns reveal that samples are single-phase with cubic Fm3m symmetry for A = Ba and tetragonal I4/mmm symmetry for A = Sr. Lattice parameter of $Ba_{2-x}La_x$ FeMoO₆ decreases from 8.076 Å for x = 0 to 8.045 Å for x = 0.2 upon La substitution. This considerable reduction of lattice parameter arises from the substitution of the smaller La^{3+} ions into the Ba^{2+} ionic sites. However, the lattice parameter of $Ba_{2-x}K_x$ FeMoO₆ decreases slightly to 8.074 Å for x = 0.2, which is due to the similar ionic radius between K^{1+} and Ba^{2+} . In $Sr_{2-x}K_x$ FeMoO₆ the lattice parameters increase monotonically with increasing x due to the substitution of bigger K^+ ions.

A plot of the T_c vs carrier doping concentration for $Ba_{2-x}B_xFeMoO_6$ (B = La and K) is shown in figure. Open symbols represent data for $Ba_{2-x}La_xFeMoO_6$ and filled symbols correspond to data for $Ba_{2-x}K_xFeMoO_6$. The magnetic transition temperature T_c is defined as the temperature of the inflection point of M (T) curve. In $Ba_{2-x}La_xFeMoO_6$ the T_c increases at a rate of 1.8 K/% with increasing La doping. The T_c is 316 K for x = 0 and 334 K for x = 0.2. However, the T_c of $Ba_{2-x}K_xFeMoO_6$ decreases at a rate of 5.6 K/% with K doping. The T_c for $Ba_{1.8}K_{0.2}FeMoO_6$ (x = 0.2) is

Similar to Ba2-rKrFeMoO6, the 260 K. $Sr_{2-x}K_x$ FeMoO₆ decreases from 379K for x = 0 to 368 K for x= 0.1. The partial substitution of La^{3+} (K⁺) for Ba^{2+} in Ba₂FeMoO₆ changes the <r_A> within the cubic symmetry and the valence state of Fe/Mo ions via electron (hole) doping. The lattice parameters of Ba2-xLaxFeMoO6 and $Ba_{2-x}K_xFeMoO_6$ are found to vary linearly with the $\langle r_A \rangle$. As the $\langle r_A \rangle$ decreases, the electronic bandwidth becomes broader, and thus the T_c increases [1]. In Ba_{2-x}K_xFeMoO₆ system, the lattice parameter decreases with K doping; this should lead to the raise of T_c . However, T_c decreases slightly with increasing K concentration. This indicates that the carrier doping can promote some modification of T_c in these oxides.

 RITTER, C. - IBARRA, M. R. - MORELLON, L. - BLASCO, J. - GARCIA, J. - De TERESA, J. M.: J. Phys.: Condens. Matter, 12, (2000), 8295.

Address and E-mail of corresponding author:

B. W. Lee, Department of Physics, Hankuk University of Foreign Studies, Yongin, Kyungki 449-791, Korea, bwlee@hufs.ac.kr