III JOINT EUROPEAN MAGNETIC SYMPOSIA

San Sebastian, 26-30 June, 2006

Book of Abstracts and Programme

III - Gp - POSTER - 032 MAGNETIC AND STRUCTURAL PROPERTIES OF Fe IONIMPLANTED GaN.

<u>W. Kim</u>¹, S. J. Kim¹, C. S. Kim¹, H. J. Kang², S. K. Noh³, S. W. Shin⁴, J. H. Lee⁴, J. H. Song⁴, and S. J. Oh⁵

Dept. of Physics, Kookmin Univ., Seoul 136-702, Korea; ²Dept. of Physics, Chungbuk National Univ., Cheongju, 361-763, Korea; ³Korea Research Institute of Standards and Science, Daejeon 305-340, Korea; ⁴Korea Institute of Science and Technology, Seoul 136-791, Korea; ⁵Korea Basic Science Institute, Daejeon 305-333, Korea

GaN is a very promising host material for making dilute magnetic semiconductor.

(DMS).[1] Magnetic ions of Fe, Co and Ni as well as Mn ion offer also suitable properties for DMS. We have investigated the magnetic and structural properties of Fe ion-implanted GaN by using high resolution x-ray diffraction (HRXRD), superconducting quantum interference device (SQUID) magnetometer, and xray photoelectron spectroscopy (XPS). 2-μm thick GaN epilayer was prepared. and 80 KeV Co⁻ ions with a dose of 3×10¹⁴ cm⁻² were implanted into GaN at 350. . The implanted samples were post annealed at 700-900 by rapid thermal annealing (RTA) in N₂ atmosphere. XRD results did not show any peaks associated with second phase formation and only the diffraction from the GaN layer and substrate structure were observed. The magnetization curve at 5 K show clear ferromagnetic behavior for 800 and 900 annealed-samples. In zero field-cooled (ZFC) and field-cooled (FC) magnetization measurements, the irreversibility and a cusp-like behaviour of the ZFC curve were observed for 800 annealed-samples. These behaviors are typically obsrved in and 900 superparamagnetic or spin glass phase. In XPS measurement, for Fe 2p core level spectra the coexistence of metallic Fe (Fe⁰) and Fe-N bond (Fe²⁺ and Fe³⁺) is observed in as-implanted sample but 700-900 is annealed-samples showed only Fe-N bond (Fe²⁺ and Fe³⁺) spectra. For Ga 3d core level spctra only Ga-Ga bonds showed for as-implanted with 700-900 annealed-samples. From these, it is considered that magnetic property of our films originated from FeN structure.

[1] Kazunori SATO and Hiroshi KATAYAMA-YOSHIDA, Jpn. J. Appl. Phys. 40 (2001) L485.