III JOINT EUROPEAN MAGNETIC SYMPOSIA

San Sebastian, 26-30 June, 2006

Book of Abstracts and Programme
ROOM-TEMPERATURE FERROMAGNETIC PROPERTIES IN Mn-DOPED RUTILE TiO$_2$-δ THIN FILMS

Kwang Joo Kim, Hee Kyung Kim, Young Ran Park1, Geun Young Ahn, Chul Sung Kim2 and Jae Yun Park3

1 Depart. of Physics, Konkuk Univ., Seoul 143-701, Korea; 2 Department of Physics, Kookmin University, Seoul 136-702, Korea; 3 Depart. of Materials Science and Engineering, Univ. of Incheon, Incheon 402-749, Korea

A room-temperature ferromagnetic behavior was observed for Mn-doped reduced titanium dioxide (TiO$_2$-δ:Mn) thin films with rutile structure synthesized by a sol-gel method. The TiO$_2$-δ:Mn films were found to be semiconducting with p-type electrical conductivity. The observed ferromagnetism is believed to be intrinsic but not related to free carriers such as holes. Oxygen vacancies are likely to contribute to the room-temperature ferromagnetism. The trapped carriers in oxygen vacancies can mediate a ferromagnetic coupling between neighboring Mn$^{3+}$ ions. Spectroscopic ellipsometry measurements on the films revealed that the band-gap energy showed a red-shift by Mn doping. The red-shift can be understood in terms of spin-exchange interactions between the Mn$^{3+}$ ion and the carrier.