10TH JOINT MMM/INTERMAG CONFERENCE JANUARY 7-11, 2007 BALTIMORE, MARYLAND **ABSTRACTS** CS-08. Effects of cation distribution for AFeO₃ (A = Ga, Al), J. We¹, S. Kim¹ and C. Kim¹ I. physics, kookmin University, seoul, South Karea In piezoelectric and ferromagnetic AFeO₃ (A = Ga, AI) samples have been prepared by various annealing conditions and then their hyperfine structures have been investigated by x-ray diffraction and Mössbauer spectroscopy. From the analysis of the x-ray diffraction patterns by Rietveld refinement method, the crystal structure of all samples was found to be an orthorhombic structure ($Pe2_{3}n$) with four different ention sites which are labeled A_1 and A_2 (predominantly occupied by A ion), Fe₁ and Fe₂ (predominantly occupied by Fe ion). The crystal structure is not changed between the samples, but the occupancies of Fe ions in four cationic sites show slight difference. We notice that the occupancies of Fe ion in A_1 tetrahedral site of the samples have an quenched GaFeO₃, slow cooled GaFeO₃, and AlFeO₃, respectively, which accord with the result of Mössbauer spectroscopy. We found that the Circ temperature decreases range from 280 to 250 K, with decreasing the Ferent pancies in A₃ site. Also, external field dependence of magnetic momentums shows a several-stepped shape which is similar with exchange-spring manner. It could be explained distinctly by an effect of Fe ion distribution a hyperfine structure. effect on the magnetic properties. From the x-ray diffraction results, the ratio of occupied Fe ions in A₁ site were determined to be 9.5, 9.0 and 7.8 % for