The 8th International Symposium on Nanocomposites & Nanoporous Materials (ISNNM8)

February 22 - 24, 2007
Jeju HAEVICHU Resort

High Performance Nano Composites Program
Nano Center for Fine Chemicals Fusion Technology
Research Center for Nano Catalysis
Environment-friendly Materials Research Center
The Korean Powder Metallurgy Institute
Mössbauer studies of geometrical frustration spinel ZnCr$_{1.98}^{57}$Fe$_{0.02}$O$_4$

Kang Ryong Choi and Chul Sung Kim

Department of Physics, Kookmin University, Seoul 136-702, Kore
(*cskim@kookmin.ac.kr)

In order to elucidate the role of Cr ions in ZnCr$_2$O$_4$ exhibiting geometrically frustration[1, 2], we have substituted a small amount of Fe ions for Cr sites and investigated the magnetic behavior of Fe ions, on nano scale, using Mössbauer measurement. The spinel ZnCr$_{1.98}^{57}$Fe$_{0.02}$O$_4$ powders were prepared by wet chemical solution process. Weighted amounts of zinc nitrate, chrome nitrate, and 57Fe isotope were dissolved in acetic acid, ethanol, nitric acid, and distilled water. The solution was refluxed at 80 °C for 12 hours to allow the gel formation and then dried at 120 °C in a dry oven for 24 hours. The dried powder was ground and annealed at 1000 °C for 3 hours in air. The crystal structure was found to be single-phase cubic spinel with space group of $Fd\overline{3}m$. The lattice constant a_0 and the internal structural parameter (α) of the oxygen were determined to be 8.331 Å and 0.260, respectively. Mössbauer spectra of ZnCr$_{1.98}^{57}$Fe$_{0.02}$O$_4$ were taken from 4.2 to 295 K using a 57Co source in a rhodium matrix. At room temperature paramagnetic doublet is observed. Isomer shift values (δ) of doublet is found to be 0.23 mm/s relative to the Fe metal, which are consistent with the high spin Fe$^{3+}$ charge state.

The absorption spectra at 4.2K show that the well developed two sextets are superposed with small difference of hyperfine field ($H_{hf1}= 463$ and $H_{hf2}= 453$ kOe). Isomer shift values (δ) of the two sextets are found to be 0.33 and 0.34 mm/s relative to the Fe metal, respectively, which are consistent with the high spin Fe$^{3+}$ charge state.

References
