ISAMMA 2007
The 1st International Symposium on Advanced Magnetic Materials, May 28-June 1, 2007, Jeju, Korea

Organized by:
Research Center for Advanced Magnetic Materials
The Korean Magnetics Society

Sponsored by:
Korea Science and Engineering Foundation
Korean Federation of Science and Technology Societies
Research Center for Spin Dynamics and Spin-Wave Devices
Magnetic Properties of Iron Doped TiO$_2$ by Proton Irradiation

Kang Ryong Choi1, Sam Jin Kim1, Hi Min Lee2, Kun Uk Kang3, Tae Keun Yang3, Min Young Lee3, Chul Sung Kim1*

1Department of Physics, Kookmin University, Seoul 136-702, Korea

2Nuclear Nano Materials Development Lab., Korea Atomic Energy Research Institute (KAERI), Daejeon 305-600, Korea

3Korea Institute Of Radiological & Medical Sciences (KIRAMS), Laboratory of Accelerator Development
215-4 Gongneung-dong, Nowon-gu Seoul 139-706 Korea

*Corresponding author: cskim@phys.kookmin.ac.kr, Phone: +82 2 910 4752, Fax: +82 2 910 5170

Recent research indicate ferromagnetism in graphite by proton irradiation[1-2]. Also, as the roles of oxygen vacancies or defects have been embossed in oxide diluted magnetic semiconductor, the appearance of new consideration which can account for the ferromagnetism has been required and suggested [3] We have investigated the magnetic properties of 57Fe-doped TiO$_2$ compounds induced by proton irradiation at various time. The x-ray diffraction patterns for all samples showed an anatase single phase and the crystal structure was determined to be a tetragonal structure with a space group $I4_1/amd$. Magnetic moments enhanced by increasing proton irradiation time. Mössbauer spectra of proton irradiated Ti$_{0.99}^{57}$Fe$_{0.01}$O$_2$ samples were taken at 295 K. The spectra consist of the wing (sextet) and the central (doublet), suggesting that the magnetically ordered (MO) phase and the paramagnetic (PM) phase, respectively. Increasing proton irradiation time, part of the Fe$^{3+}$ ions were converted to Fe$^{2+}$ ions by compensation charge. It could be, therefore, evidenced that the enhancement of magnetic moment after proton irradiation is contributed to the moment by the spin-orbit coupling of Fe$^{2+}$ ions.

REFERENCES

