

ISAMMA2007

The 1st International Symposium on Advanced Magnetic Materials May 28-June 1, 2007, Jeju, Korea

Organized by

Research Center for Advanced Magnetic Materials The Korean Magnetics Society

Sponsored by

Korea Science and Engineering Foundation
Korean Federation of Science and Technology Societies
Research Center for Spin Dynamics and Spin-Wave Devices

CoFe₂O₄

LinsFersO4

Superexchange Interactions in Various Spinel Ferrites

Sung Wook Hyun, and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702, Korea

*Corresponding author: cskim(\(\epsilon\) phys.kookmin.ac.kr, Phone: +82 2 910 4752, Fax: +82 2 910 5170

Spinel ferrites, MFe₂O₄ (M=Ni, Mg, Co, Li) samples were prepared by sol-gel method. It has been studied by x-ray diffraction, Mössbauer spectroscopy, X-ray diffraction patterns were analyzed by the Rietveld refinement. The samples have been cubic spinel structure with the lattice constant (a₀) is 8.326 ~ 8.390 Å. The temperature dendence of the magnetic hyperfine field is analyzed by the Néel theory of ferrimagnetism. The intersublattice A-O-B and intrasublattice A-O-A superexchange interactions are found to be antiferromagnetic while the intra-sublattice B-O-B superexchange interaction is ferromagnetic for the MFe₂O₄ (M=Ni, Mg, Co) samples as shown in Table I. On the other hand, the intersublattice superexchange interaction is found to be antiferromagnetic while the intrasublattice superexchange interactions are ferromagnetic for the Li-ferrite sample.

Table 1. The intersublattice JA-B and intrasublattice $J_{A\cap A}$ and $J_{A\cap B}$ superexchange interactions for the MFe₂O₄ (M=Ni, Mg, Co, Li) samples.

A STATE OF THE PARTY OF THE PAR	J _{A-B} (kB)	$J_{\Lambda-\Lambda}$ (kB)	J _{B-B} (kB)	$T_{N}(K)$	a_0 (Å)
NiFe ₂ O ₄	-25.7	-4.0	4.2	860	8.326
MgFe ₂ O ₄	-10.0	-0.7	1.4	710	8.390

-18.9

16.5

-25.0

-10.7

3.9

20.6

870

912

8.381

8.334