ISAMMA2007 The 1st International Symposium on Advanced Magnetic Materials May 28-June 1, 2007, Jeju, Korea #### Organized by Research Center for Advanced Magnetic Materials The Korean Magnetics Society ### Sponsored by Korea Science and Engineering Foundation Korean Federation of Science and Technology Societies Research Center for Spin Dynamics and Spin-Wave Devices ## Evolution of Magnetic and Electronic Properties of Spinel Cr_xFe_{3-x}O₄ Thin Films Hee Jung Lee¹, Seung-li Choi¹, Jung Han Lee¹, Kwang Joo Kim*¹, Dong Hyeok Choi², and Chul Sung Kim² ¹Department of Physics, KonkukUniversity, Seoul 143-701, Korea ²Department of Physics, Kookmin University, Seoul 136-702, Korea *Corresponding author: kjkim@konkuk.ac.kr, Phone: +82 2 450 3085, Fax: +82 2 3436 5361 In this study, by substituting Cr in Fe_1O_4 , $Cr_xFe_{1x}O_4$ thin film samples were prepared by sol-gel method on Si(100) substrates. The samples were found to be polycrystalline in nature and the Cr-doped ones maintained the same structure as that of Fe_3O_4 up to x=0.95 without any secondary phases. The lattice constant is decreased slightly with increasing Cr composition with the value for x=0.95 reduced by 0.05% compared to that of Fe_3O_4 . The decrease of lattice constant can be explained in terms of substitution of octahedral Fe^{3s} sites by Cr^{3s} ions. The $Cr_xFe_{3x}O_4$ films were found to exhibit n-type character with resistivity increasing with increasing Cr content. Magnetic hysteresis curves of the samples measured at room temperature indicate that the saturation magnetization (M_s) increases at low Cr composition (x \leq 0.05) and decrease as x increases further. On the other hand, the coercivity (H_s) increases as x increases. Simple comparison of the spin magnetic moment of Cr¹ and Fe³⁺ insc an not explain the increase of M_s. The increase of M_s is attributable to the unquenched orbital angular momentum of octahedral Fe³⁺ ion [1] due to perturbation of octahedral Cr¹⁺ ions existing nearby. The increase of H_c is attributed to the increase of magnetic anisotropy by the existence of octahedral Cr¹⁺ iod³ ions. Magnetoresistance of Cr_xFe_{3x}O₄ films is found to decrease with increasing x as shown in Fig. 1 and the probable reason for it is discussed. Fig. 1. Magnetoresistance measured for (a) Fe₃O₄ and (b) Cr_{0.49}Fe_{2.51}O₄ thin films at room temperature. #### REFERENCES REPLEACH CO. J. Huang, C. F. Chang, H.-T. Jeng, G. Y. Guo, H.-J. Lin, W. B. Wu, H. C. Ku, A. Fujimori, Y. Takahashi, and C. T. Chen, Phys. Rev. Lett. 93, 077204 (2004).