

ISAMMA2007

The 1st International Symposium on Advanced Magnetic Materials May 28-June 1, 2007, Jeju, Korea

Organized by

Research Center for Advanced Magnetic Materials The Korean Magnetics Society

Sponsored by

Korea Science and Engineering Foundation
Korean Federation of Science and Technology Societies
Research Center for Spin Dynamics and Spin-Wave Devices

SA06

Relation between Mössbauer Spectroscopy and Geometrical Frustration Factors in $MCr_{1.98}^{57}Fe_{0.02}O_4$ (M = Co, Zn)

Kang Ryong Choi, Tae Joon Kouh, Sam Jin Kim, Chul Sung Kim*

¹Department of Physics, Kookmin University, Seoul 136-702, Korea
*Corresponding author: cskim(∂phys.kookmin.ac.kr, Phone; +82 2 910 4752, Fax: +82 2 910 5170

In order to elucidate the role of Cr ions in $MCr_2O_4(M = Co, Zn)$ exhibiting geometrically frustration and multiferroic property[1, 2], we have substituted a small amount of Fe ions for Cr sites and investigated the magnetic behavior of Fe ions using by Mössbauer measurement. The spinel $MCr_{1,m}^{5/7}Fe_{0.12}O_4$ powders were prepared by wet chemical solution process. The crystal structure was found to be single-phase cubic spinel with space group of Fd3m. The lattice constants a_0 and the internal structural parameter (x) of the oxygen were determined to be 8.340, 8.331 Å and 0.261 and 0.260, respectively. Mössbauer spectra of $MCr_{1,m}^{5/7}Fe_{0.12}O_4$ were taken from 4.2 to 295 K using a ^{57}Co source in a rhodium matrix. The Mössbauer absorption spectra at 4.2K show that the well developed two sextets are superposed with small difference of hyperfine fields(fh_0). The hyperfine fields of $CoCr_{1,m}^{5/7}Fe_{0.12}O_4$ and $ZnCr_{1,m}^{5/7}Fe_{0.12}O_4$ were determined to be 490–480 kOe and 460–450 kOe,

respectively. Isomer shift values (6) of the two sextets are found to be 0.33–0.35 mm/s relative to the Fe metal, which are consistent with the high spin Fe³⁺ charge state. From the results of Mössbauer measurement, it is suggested that Cr³⁺ ions have two different magnetic sites, and is correlated between hyperfine fields and degree of magnetic geometrical frustration.

REFERENCES

- [1] S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T. H. Kim, and S.-W. Cheong, Nature 418, 856 (2002).
- [2] Y. Yamasaki, S. Miyasaka, I. Y. Kaneko, J.-P. He, T. Arima, and Y. Tokura, Phys. Rev. Lett., 96, 207204 (2006).