

The 10th Asia Pacific Physics Conference

Handbook & Abstracts

POSCO International Center, POSTECH Pohang, Korea

http://appc10.org

[Ac2-P.042] Change of hyperfine parameters in multiferroic $HoMn_{0.99}Fe_{0.01}O_3$ Sung Back Kim^1 Kang Ryong Choi², Chul Sung Kim² (Laboratory of Pohang Emergent Materials and Department of Physics, POSTECH, Pohang 790-784, Korea.¹, Department of Physics, Kookmin University, Seoul 136-702, Korea.²) We have investigated Mössbauer spectra of HoMn_{0.99}Fe_{0.01}O₃ and the magnetic hyperfine interaction coupled with electric order parameter can be observed from Mössbauer spectra. The spectra below magnetic Nel temperature $(T_N = 72 \text{ K})$ show one set of hyperfine split sextet and the spectra above T_N exhibit two lines with an equal intensity, indicating that the Fe³⁺ ions occupy the Mn^{3+} site of $HoMnO_3$. The isomer shift value at room temperature is found to be 0.16 mm/s. The temperature dependence of electric quadrupole splitting values show sharp features at 5 K and 37 K. Also, the abrupt change of magnetic hyperfine field occurs simultaneously with the anomaly of dielectric constant $\varepsilon(T)$. Using the Mössbauer technique we report evidence for the coupling of the electric and magnetic order parameters of HoMnO₃ and observed the transition temperatures accurately.

Keywords: M"ossbauer, Electric quadrupole splitting, Magnetic hyperfine field, Multiferroic, HoMnO₃