52ND ANNUAL CONFERENCE ON MAGNETISM AND MAGNETIC MATERIALS NOVEMBER 5-9, 2007 TAMPA, FLORIDA



**ABSTRACTS** 

CS-17. Geometrical frustration effect of Cr ions in Mg-chromites by Mössbauer spectroscopy. K. Choi<sup>1</sup>, S. Kim<sup>1</sup>, B. Lee<sup>2</sup> and C. Kim<sup>1</sup>I. Physics, Kookmin Univ., Seoul, South Korea; 2. physics, Hankuk University of Foreign Studies, Yongin, South Korea

Chromites A Cr<sub>2</sub>O<sub>4</sub> (A=Mg, Zn, Cd, and Hg) have non-magnetic A site and B site of most frustrated lattice by Cr3+ ions[1,2]. Zn Cr2O4 presents a very high Curie-Weiss temperature at -390 K and a first order anti-ferromagnetic transition 12.5 K, Mg Cr<sub>2</sub>O<sub>4</sub> have similar temperature  $(T_N = 12 \text{K})$ . We have substituted a small amount of Fe ions for Cr sites and investigated the magnetic behavior of Fe ions, on nano scale, using Mössbauer measurement. Polycrystalline Mg<sub>1.98</sub><sup>57</sup>Fe<sub>0.02</sub>O<sub>4</sub> compound was synthesized by sol-gel process. The crystal structure was found to be single-phase cubic spinel with space group of Fd3(-)m. The lattice constant  $a_0$  and the internal structural parameter (x) of the oxygen were determined to be 8.336 Å and 0.260, respectively. The A<sub>1 op</sub> <sup>57</sup>Fe<sub>0 02</sub>O<sub>4</sub> (A = Mg, Zn) Cr-Cr linkage has each bond length to be 2.945 Å and 2.947 Å, respectively. We have obtained a increased Néel temperature ( $T_N = 12 \sim 12.5 \text{ K}$ ) for Mg, Zn chromites compared with Cd, Hg- chromites ( $T_N = 6 \sim 8 \text{ K}$ ). Mössbauer spectra of Mg<sub>1.98</sub><sup>57</sup>Fe<sub>0.02</sub>O<sub>4</sub> were taken from 4.2 to 295 K. bove the Néel temperature ( $T_N = 12 \text{ K}$ ) paramagnetic doublet is observed. The spectrum at room temperature consisted of doublet split with the electric quadrupole splitting of 0.39 mm/s. The isomer shift of doublet is 0.21 mm/s relative to the Fe metal that is consistent with the Fe3+ valence state. The magnetic properties and Mössbauer results can be explained by the B-B exchange interaction in Mg<sub>1.98</sub><sup>57</sup>Fe<sub>0.02</sub>O<sub>4</sub>.