52ND ANNUAL CONFERENCE ON MAGNETISM AND MAGNETIC MATERIALS NOVEMBER 5-9, 2007 TAMPA, FLORIDA **ABSTRACTS** EU-12. Synchrotron radiation spectroscopy study of spinel FeCr₂X₄ (X=S, Se). J. Kang^{1,2}, H.J. Lee¹, G. Kim¹, H.S. Kim¹, D.H. Kim¹, S.W. Han², S.J. Kim³, C.S. Kim³, H.G. Lee⁴, J.Y. Kim⁴ and B.I. Min⁵1. Physics, The Catholic University of Korea, Bucheon, South Korea; 2. CSCMR, Seoul National University, Seoul, South Korea; 3. Physics, Kookmin University, Seoul, South Korea; 4. PAL, POSTECH, Pohang, South Korea; 5. Physics, POSTECH, Pohang, South Korea; 5. Physics, POSTECH, Pohang, South Korea; The observation of the very large negative magneto-resistance (MR) and the metal-insulator (MI) transition in FeCr₂S₄ has invoked much interest in spinel chalcogenides [1]. Rather different magnetic properties have been reported for FeCr₂S₄ and FeCr₂Se₄: FeCr₂S₄ exhibits a ferromagnetic transition at T_C≈172 K (T_c: a Curie temperature) [1], while FeCr₂Se₄ exhibits an anti-ferromagnetic transition at T_N≈218 K (T_N: a Neel temperature) [2]. In order to understand the origin of their magnetic properties of FeCr₂X₄ (X=S, Se), it is important to understand their electronic structures. In this work, we have investigated the electronic structures of FeCr₂X₄ (X=S, Se) and the valence states of Fe and Cr ions by using synchrotron-radiation excited spectroscopies, such as soft x-ray absorption spectroscopy (XAS), photoemission spectroscopy (PES), and soft x-ray magnetic circular dichroism (XMCD). The measured T 2p XAS spectra show that Cr ions are nearly trivalent (Cr³⁺) and that Fe ions are close to divalent (Fe²⁺), respectively. Interestingly, the Fe 2p XAS spectra of FeCr₂ X_A (X=S, Se) are different from those of divalent oxides, but very similar to that of Fe metal, implying the metallic-like bonding of Fe 3d electrons. The T 2p XMCD spectra (T=Fe, Cr), obtained at low temperature (T), provide evidence that the magnetic moments of Cr and Fe ions are aligned antiparallel to each other, and the T-dependent 2p XMCD measurements reveal interesting behavior. Valence-band PES study suggests the importance of the hybridization between the Fe 3d and X p states (X=S, Se). [1] A. P. Ramirez, et al., Nature 386, 156 (1997). [2] J. H. Kang, et al., J. Appl. Phys. 99, 08F714 (2006).