52ND ANNUAL CONFERENCE ON MAGNETISM AND MAGNETIC MATERIALS NOVEMBER 5-9, 2007 TAMPA, FLORIDA **ABSTRACTS** HR-04. The effect of manganese ions in MnCr_{1.98}⁵⁷Fe_{0.02}O₄by Mössbauer spectroscopy. K. Choi¹, S. Kim¹ and C. Kim¹ I. Physics, Kookmin Univ., Seoul, South Korea The main scope of the present study is to examine the weak geometrical frustration and multiferroic effect in M Cr₂O₄ (M = Co, Mn)[1, 2]. Co²⁺ and Mn²⁺ ions occupy the A site, Mn2+ (3d5) exhibits a half-filled shell with a total spin S = 5/2 and zero orbital moment and Co^{2+} (3d⁷) has S = 3/2 and small spinorbit effects[3]. Geometrical frustration was affected among the B sites forming the pyrochlore lattice relation with magnetic ions of A sites. We have substituted a small amount of Fe ions for Cr sites and investigated the magnetic behavior of Fe ions, on atomic scale, using Mössbauer measurement. Polycrystalline MnCr_{1.98}⁵⁷Fe_{0.02}O₄ compound was prepared by wet-chemical process. The crystal structure was found to be single-phase cubic spinel with space group of Fd3(-)m. The lattice constant a_0 and the internal structural parameter (x) of the oxygen were determined to be 8.444 Å and 0.263, respectively. Mössbauer spectra of Mn_{1.98}⁵⁷Fe_{0.02}O₄ were taken from 4.2 to 295 K. The absorption spectra at 4.2 K show that the well developed two sextets are superposed with small difference of hyperfine field (H_{hf}1= 485 and $H_{\rm h}2=475$ kOe). Isomer shift values (δ) of doublets are found to be 0.42 and 0.43 mm/s relative to the Fe metal, respectively, which are consistent with the high spin Fe^{3+} charge state. Above the Néel temperature $(T_N = 45 \text{ K})$ paramagnetic doublet is observed. We note that even though the magnetic hyperfine fields on B-site are similar a noticeable difference of the Néel temperatures is shown between two samples $(M_{1.98}^{57}Fe_{0.02}O_4 (M = Co, Mn))$. It is interpreted is terms of A-B super-exchange interaction with related ionic bond lengths. [1]. K. Tomiyasu, et al., Phys. Rev. B., 74, 024413 (2004). [2]. Y. Yamasaki, et al., Phys. Rev. Lett. 96, 207204 (2006). [3]. N. Tristan, et al., Phys. Rev. B., 72, 174404 (2005).