ICAMD 2007
The 5th International Conference on Advanced Materials and Devices
http://www.icamd.or.kr
Dec. 12 ~ 14, 2007, Jeju, KOREA
Ramada Plaza Jeju Hotel

PROGRAM & ABSTRACTS

Organized by
Applied Physics Division, The Korean Physical Society
Quantum Photonic Science Research Center
The Korean Vacuum Society
Center for Nanotubes and Nanostructured Composites
Electron Spin Science Center
Yonsei Medical National Core Research Center
Asia Pacific Center for the Theoretical Physics
Research Center for Spin Dynamics and Spin-wave Devices
Nano Optical Property Laboratory
Quantum-Function Spinics Laboratory
Vietnamese Academy of Science and Technology

Sponsored by
Korean Ministry of Science and Technology
Korea Science and Engineering Foundation
BK21 Division of Advanced Research & Education in Physics,
Hanyang University

한국물리학회
The Korean Physical Society
Crystallographic and magnetic properties of Ni$_{1-x}$Cu$_x$Fe$_2$O$_4$ (x=0.0, 0.5, 0.9) by sol-gel method

Han Na Choi, Sung Wook Hyun, and Chul Sung Kim

Physics, Kookmin University, Seoul 136-702, KOREA

Ni$_{1-x}$Cu$_x$Fe$_2$O$_4$ (x=0.0, 0.5, 0.9) samples prepared by sol-gel method have been studied by XRD, VSM and Mössbauer spectroscopy. The crystal is found to be an inverse cubic spinel structure. The variation of lattice constants (a_0) obeyed Vegard's law with linearly increases from 8.326 to 8.386±0.005 Å. The magnetic property of Ni$_{0.5}$Cu$_{0.5}$Fe$_2$O$_4$ is found to be $M_s = 36.67$ emu/g and $H_c = 54.75$ Oe measured by VSM. Mössbauer spectra of all samples were obtained at various temperatures ranging from 4.2 to Néel temperature (T_N). The spectra show decrease of T_N from 860 to 755±5 K. It can be explained by the superexchange interactions with applied Néel theory of ferrites to the two sublattices of Ni$_{1-x}$Cu$_x$Fe$_2$O$_4$. The iron ions at both A (tetrahedral) and B (octahedral) sites are found to be ferric high-spin states with isomer shift value (δ) = 0.26 mm/s. The Debye temperatures of x=0.9 sample for the A and B sites were found to be 568±5 K and 194±5 K with large difference, respectively.

*Chul Sung Kim, e-mail: cskim@kookmin.ac.kr, Tel: +82-2-910-4752, Fax: +82-2-910-5170