ICAMD 2007
The 5th International Conference on Advanced Materials and Devices
http://www.icamd.or.kr
Dec. 12 ~ 14, 2007, Jeju, KOREA
Ramada Plaza Jeju Hotel

PROGRAM & ABSTRACTS

Organized by
Applied Physics Division, The Korean Physical Society
Quantum Photonic Science Research Center
The Korean Vacuum Society
Center for Nanotubes and Nanostructured Composites
Electron Spin Science Center
Yonsei Medical National Core Research Center
Asia Pacific Center for the Theoretical Physics
Research Center for Spin Dynamics and Spin-wave Devices
Nano Optical Property Laboratory
Quantum-Function Spinics Laboratory
Vietnamese Academy of Science and Technology

Sponsored by
Korean Ministry of Science and Technology
Korea Science and Engineering Foundation
BK21 Division of Advanced Research & Education in Physics,
Hanyang University

한국물리학회
The Korean Physical Society
Crystallographic and magnetic properties of FeGa$_2$S$_4$

Bo Ra Myoung, Sam Jin Kim, and Chul Sung Kim

Physics, Kookmin University, Seoul, KOREA

The synthesis of the FeGa$_2$S$_4$ was accomplished by the direct reaction of the high-purity elements Fe, Ga, S, in an evacuated 10$^{-6}$ torr quartz tube. The crystal structure of FeGa$_2$S$_4$ has a trigonal (space group P3(-)m1), with the lattice constants $a = 3.669$ Å, $c = 12.096$ Å, respectively. The cation and anion parameters are determined to be Fe(0,0,1/2), Ga(1/3,2/3,0.208), S$_1$ (1/3,2/3,0.863), S$_2$(1/3,2/3,0.390) by the Rietveld refinement. The sample is semiconductor and the magnetic behavior shows an antiferromagnetic character.

The Mössbauer spectra were obtained at various temperatures from 4.5 to 600 K. The Mössbauer spectra show severely distorted 8-line shape, which denotes a large electric quadrupole contribution at low temperature. Magnetic hyperfine field and electric quadrupole interactions at 4.5 K have been fitted, yielding the following results: $H_{hf} = 113.9$ kOe, $\Delta E_0 = 1/2e^2qQ(1+1/3\eta^2)^{1/2} = 1.28$ mm/s, $\theta = 45^\circ$, $\varphi = 0^\circ$, $\eta = 0.5$, and $R = 1.60$, where θ and φ are the polar and azimuthal angles, respectively. η is the asymmetric parameter and R is the ratio of electric quadrupole interaction to magnetic dipole interaction. In the temperature region 295 K $\leq T \leq$ 600 K, the ratio of intensity of two line $R_q = A_1/A_2$ increases rapidly from 1.0 to 2.7, where A_1, A_2 correspond to Mössbauer absorption area of the quadrupole splitting for lower and higher energies, respectively. We conclude that it occurs from Goldanskii-Karyagin effect for an iron atom in FeGa$_2$S$_4$.

*Bo Ra Myoung, e-mail: bora1050@phys.kookmin.ac.kr, Tel: +82-2-910-5121, Fax: +82-2-910-5170