Mössbauer studies of 57Fe-doped in LiCoPO$_4$ at low temperatures.

S. Moon, C. Kim
Department of Physics, Kookmin University, Seoul, South Korea

Introduction
Since the magnetoelectric (ME) effect was observed in Lithium-orthophosphates, LiMPO$_4$ (M=Transition metal) have been extensively investigated for information storage and electronic, magnetic and optical switches [1-3]. Also, the high lithium-ionic conductivity has been studied as a high potential cathode material by using in secondary Li-ion rechargeable battery [4]. Recently, the observation of ferrotoroidic (FTO) domains in LiCoPO$_4$ was reported by Bas. Van Aken et al [5]. They claimed that the ferrotoroidic system has asymmetric structure by migration of Co$^{2+}$ ions in antiferromagnetic (AFM) structure with rotation of the spins. The studies of neutron scattering demonstrated the magnetic properties of LiCoPO$_4$ which was related between 2D and 3D magnetic systems [2, 5]. These structures exhibit a strong linear magnetoelectric (ME) effect. AFM ordering reduces the symmetry from mmmm to mmmm', and weak ferromagnetism along y axis reduces the symmetry from mmmm' to 2'mm', therefore, finally, it has two AFM and two FTO domains in LiCoPO$_4$ [5].

From these complex magnetic structures, LiCoPO$_4$ show the various anomaly effects. Therefore, it is essential to determine the unusual magnetic properties of LiCoPO$_4$ in low temperatures for properly understand the mechanism. We present crystallographic and magnetic properties of LiCo$_{0.99}$Fe$_{0.01}$PO$_4$ (LCFPO) using the Mössbauer spectroscopy and the x-ray diffraction (XRD) Experiments

The polycrystalline sample of (LCFPO) was made by using a direct reaction. Lithium carbonate, ammonium dihydrogen phosphate, cobalt oxide, and iron metal (57Fe) were mixed in stoichiometric ratios and sealed in evacuated quartz tubes. The temperature was slowly raised up to 700 °C over a period of 1 day. The crystal structure of the sample was examined by using an X-ray diffractometer with Cu- Kα radiation ($λ=1.5406$ Å) and was analyzed by using a Rietveld refinement. The Mössbauer spectra were recorded using a conventional spectrometer of the electromechanically type with a 57Co source in a rhodium matrix.

Results and discussion

X-ray diffraction pattern for LCFPO showed a pure olivine single phase. The crystals structure was determined to be an orthorhombic with space group Pnma. The determined lattice constants a_0, b_0, and c_0 are 10.241Å, 5.924Å, and 4.698 Å, respectively.

The Mössbauer spectra of LCFPO at various temperatures ranging from 4.2 to 300 K are shown in Fig. 1. We have analyzed the Mössbauer spectra by using the full Hamiltonian. The Mössbauer spectrum shows a large asymmetric and distorted line broadening at 4.2 K. The magnetic hyperfine field (H_{hf}) and the quadrupole splitting ($ΔE_Q$) at 4.2 K were fitted and yielded the following results: $H_{hf}=127$ kOe, $θ=16^°$, $ϕ=0^°$, $η=0.95$, $ΔE_Q=(1/2)e^2q[1+(1/3)η^2]^{-1/2}=0.36$ mm/s, and $R=3.0$. Here, $η$ is the asymmetric parameter, and R is the ratio of the electric quadrupole interaction to the magnetic dipole interaction. It is noticeable that the magnitude of R is greater than 1 below T_N. This result indicates that the electric quadrupole interaction is larger than the magnetic dipole interaction in the below T_N region. Generally, the H_{hf} has a maximum value at 0 K and decreases with increasing temperature. In Fig. 2, we observe that the H_{hf} has a maximum at 9 K. The unusual reduction of H_{hf} below 9 K can be explained in terms of the temperature dependence of the cancellation effect between the orbital current field term and the Fermi contact term in H_{hf}. The magnitude quadrupole shift at below T_N was caused by large crystal field due to the asymmetric struc-