FUROPE International Magnetics Conference

ADVANCE PROGRAM

Madrid, Spain May 4th - 8th 2008

EH-01

Spin control by doping non-magnetic ions in magnetic ordering type of multiferroic materials.

K. Choi¹, S. Kim¹, B. Lee², C. Kim¹

1. Physics, Kookmin Univ., Seoul, South Korea; 2. Hankuk University of Foreign Studies, Yongin, South Korea

Introduction

Recently, numerous researches have been focused on the magnetic ordering type of multiferroic materials, RMn₂O₅, orthorhombic RMnO₃(R=rare earth), delafossite CuFeO₂, spinel CoCr₂O₄, MnWO₄, and hexagonal ferrite (Ba,Sr)₂Zn₂Fe₁₂O₂₂[1]. These materials are reported showing 'frustration magnet' due to canted spiral magnetic spin. These phenomena bring about incommensurate spin behavior and ferroelectricity by spin current model. Especially, CoCr₂O₄ materials have been investigated for multiferroic property and dielectric anomalies have been explained by spin current model. But CoCr₂O₄ materials have very small polarization (~2 μ C/ m^2) [2]. Here, we control spin behavior by substituted non-magnetic ions in CoCr₂O₄.

The objective of the present research is to elucidate the role of the Cr ion in the multiferroic effect by replacing the Cr ion in the multiferroic material with a similar transition metal ion Fe. The similar ionic radii of Fe^{3+} and Cr^{3+} mean that lattice distortion effects of the substitution may be ignored, and the electronic structure can be studied.

Experiment and results

The spinel $CoCr_{1.98}^{57}Fe_{0.02}O_4$ (CCO), $Co_{0.9}Zn_{0.1}Cr_{1.98}^{57}Fe_{0.02}O_4$ (CZCO), $CoCr_{1.88}Al_{0.10}^{57}Fe_{0.02}O_4$ (CACO) powders were prepared by wet chemical solution process. Weighted amounts of cobalt acetate, zinc acetate, aluminum acetate, chrome nitrate, and ⁵⁷Fe isotope were dissolved in acetic acid, ethanol, nitric acid, and distilled water. For doping ⁵⁷Fe to facilitate Mössbauer measurement, iron isotope was dissolved in a diluted HNO₃ and then the proper amount of ⁵⁷Fe added into the solution. The solution was refluxed at 80 oC for 12 hours to allow the gel formation and then dried at 120 °C in a dry oven for 24 hours. The dried powder was grounded and annealed at 1000 °C for 3 hours in air. The crystal structures of the samples were examined by x-ray diffraction with Cu K α radiation ($\lambda = 1.5406$ Å). Magnetic properties were characterized by the vibrating sample magnetometer (VSM). The Mössbauer spectra were recorded using a conventional spectrometer a electromechanical with a ⁵⁷Co source in a rhodium matrix.

The crystal structure was found to be single-phase cubic spinel with space group of Fd3m. The lattice constants a0 were determined to be CCO = 8.340, CZCO = 8.328, and CACO = 8.305 Å, respectively. These results are due to that $Co^{2+}(0.72 \text{ Å})$ and $Zn^{2+}(0.74 \text{ Å})$ have the similar ionic radius and they occupies A (tetrahedral) sites and $Cr^{3+}(0.63 \text{ Å})$ and $Al^{3+}(0.51 \text{ Å})$ have the different ionic radius and they occupies B (octahedral) sites. The Bragg factor RB and RF were below 5 %, respectively.

The zero field cooled (ZFC) magnetization curves taken at 100 Oe for various temperatures are shown in Fig. 1. The ferrimagnetic transition were observed at around $90 \sim 97$ K, which was determined as Néel temperature. ZFC curves showed an abnormal magnetic transition ($T_{\rm S}$) at 28 K(CCO), 18 K(CZCO), 20K (CACO), which are associated with spiral magnetic order in the systems. With Al ions substituted in B site, the magnetic transition temperature decreases, but the magnetization increase. Mössbauer spectra of CACO were taken at various temperatures ranging from 4.2 to 93 K as shown in Fig. 2. Two magnetic phases were developed and showed two sharp sextets of spectra below $T_{\rm S}$. The isomer shifts at all temperatures range are about 0.3 mm/s relative to Fe metal, which means that both Fe ions are Fe³⁺ states. The electric quadrupole splittings($\Delta E_{\rm O}$) were

found to be nearly zero values below $T_{\rm N}$. The magnetic hyperfine fields of outer and inner sub-spectrum were $H_{\rm hf}=480$ and 462 kOe, respectively. These effects can be explained by Al substitute specification B site. These results bring forth the decreasing Néel and spin-reorientation temperature and increasing magnetic moments.

[1] S-W Cheong and Maxim Mostovoy, Nature, 6, 13 (2007).

[2] Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.-P. He, T. Arima, and Y. Tokura, Phys. Rev. Lett., 96, 207204 (2006).

Fig. 1 Magnetization for CCO,CZCO,CACO at various temperatures at 100Oe.

Fig. 2. Mössbauer specta of CACO at various temperatures.

INTERMAG 2008 849