AMC 2008
Asian Magnetics Conference 2008
December 10-13, 2008, Paradise Hotel, Busan, Korea

Hosted by
The Korean Magnetics Society

Sponsored by
Korea Research Foundation
Korea Science and Engineering Foundation
Korean Federation of Science and Technology Societies

The Korean Magnetics Society
Electrical and Magnetic Properties of (1-x)CoFe$_2$O$_4$-(x)BaTiO$_3$ Composites

Achana Khamkongklaeo1, Teerapon Yumwong1, and Santi Maesini1,2,*

1Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
2National Metals and Materials Technology Center (MTEC), Thailand Science Park, Pathumthani, 12120, Thailand.

*Corresponding author: Achana Khamkongklaeo, e-mail: achana_k@kku.ac.th

The magnetoelectric composites, namely (1-x)CoFe$_2$O$_4$-(x)BaTiO$_3$ (CF-BT) in which x varies as 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 1.0 have been prepared by wet ball milling method using nanopowders of CoFe$_2$O$_4$ (35-55 nm) and BaTiO$_3$ (85-128 nm) as starting materials. The compacted CF-BT samples were sintered at 1200°C for 18 hours in air to obtain CF-BT composites. The structure of the sintered CF-BT composites was studied by XRD technique. Morphology of the CF-BT composites was revealed by SEM. The magnetic properties of composite samples were measured using vibrating sample magnetometry (VSM). Room temperature magnetization results showed a ferromagnetic behavior for all the CF-BT composite, having the values of specific magnetic moment (M_s) in the range of 15-46.5 emu/g at 10 kOe. M_s decreased with increasing the BaTiO$_3$ concentration. The dielectric properties were determined as a function of the temperature ranging from -50 to 200°C at 1 kHz. The dielectric constant did not depend on the parameter x. The effects of parameter x on the electrical and magnetic properties of the materials were discussed.

Characterization of CoCr$_2$O$_4$ on Pt(111) Grown by Using Pulse Laser Deposition

Kang Ryong Choi, Seung Je Moon, Taejoon Koh, In Bo Shim, Sam Jin Kim, and Chul Sung Kim*

*Department of Physics, Kookmin University, Seoul 136-702, Korea

*Corresponding author: Chul Sung Kim, e-mail: ckim@kookmin.ac.kr

CoCr$_2$O$_4$(CCO) materials show multiferroic effect that ferroelectricity and ferromagnetism co-exist[1,2]. CCO film was deposited on Pt/Ti/SiO$_2$ substrates by Pulse Laser Deposition (PLD). The CCO film were prepared using KrF(248 nm) excimer lasers and with a pressure of 100 mTorr, substrate temperatures of 70°C. The crystal structure was found to be oriented (111) planes by means of X-ray diffraction (XRD) with Cu radiation. The thickness and morphology of film were measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The magnetic properties were measured using a Superconducting Quantum Interference Device(SQIUD). The ferrimagnetic transition was observed at around 95 K, which was determined as Néel temperature and spin magnetic transition temperature(T_S) was 21.5 K, while the T_C of bulk CCO was 28.0 K. We note that lowering of CCO film in T_C is closely related to the preferred orientation of (111) direction.

REFERENCES