AMC2008

Asian Magnetics Conference 2008

December 10-13, 2008, Paradise Hotel, Busan, Korea

Hosted by

The Korean Magnetics Society

Sponsored by

Korea Research Foundation Korea Science and Engineering Foundation Korean Federation of Science and Technology Societies

BS19

The Study of Magnetic Properties in Lithium-iron Phosphate

Seung Je Moon1, Choong-Sub Lee2, and Chul Sung Kim1*

¹Department of Physics, Kookmin University, Seoul 136-702, Korea ²Department of Physics, Pukyong National University, Pusan 608-737, Korea

*Corresponding author: Chul Sung Kim, e-mail: cskim@kookmin.ac.kr

Since the magnetoelectric (ME) effect was observed in Lithium-orthosphates LiMPO₄ (M=Fe²⁺, Mn²⁺, Co²⁺, Ni²⁺), have been extensively investigated for information storage and electronic, magnetic and optical switches [1]-[3]. The polycrystalline sample of LiFePO₄ and LiFe_{0.8}Co_{0.2}PO₄ was made by using a direct reaction. X-ray diffraction pattern for LiFePO₄ and LiFe_{0.8}Co_{0.2}PO₄ showed a pure olivine single phase. The crystal structure of LiFePO₄ and LiFe_{0.8}Co_{0.2}PO₄ was determined to be an orthorhombic with space group *P*nma. The determined lattice constants a_0 , b_0 , and c_0 are 10.241 and 10.397 Å, 5.924 and 6.002 Å, and 4.698 and 4.700 Å, respectively. The Mössbauer spectrum shows a large asymmetric and distorted line broadening at 4.2 K. The magnetic hyperfine field (H_{hl}) and the quadrupole splitting (AE_0) were 135 and 129 kOe, 2.61 and 2.61 mm/s, respectively. The charge states of Fe ions are Ferrous (Fe²⁺) in character by isomer shift; 1.25 and 1.24 mm/s at 4.2 K.

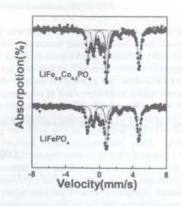


Fig. 1. Mössbauer spectra of LiFePO₄ and LiFe_{0.4}Co_{0.2}PO₄ at 4.2 K.

REFERENCES

- [1] I. Komev et al, Phys. Rev. B, 62, 12247 (2000).
- [2] D. Vaknin et al. Phys. Rev. Lett., 92, 207201 (2004).
- [3] M. Mostovoy et al., Phys. Rev. Lett., 96, 067601 (2006).

Magnetic Properties of Fe-doped La_{0.5}Sr_{0.5}TiO₃ Nanoparticles

K. Wongsaprom*, E. Swatsitang, and S. Maensiri

Small & Strong Materials Group (SSMG), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand

*Corresponding author: K. Wongsaprom, e-mail: wkwanruthai@gmail.com

Dilute magnetic oxides have been intensively researched in recent years. It has been reported that the wide band gap materials ZnO, TiO₂ and SnO₂ exhibit ferromagnetism with a curie temperature above room temperature when the oxide doped only a few atomic percent of 3d transition metals [1-6]. In this paper, we report on the effects of percent dopant and calcination temperature in the nanoparticles of Fe-doped La_{0.5}Sr_{0.5}TiO_{3.6} (La_{0.5}Sr_{0.5}Ti_{1.8}Fe_xO_{3.6}, $0 \le x \le 0.02$) synthesized by a polymerized complex method [7-9]. The structure, elemental composition, morphology and particle size of the synthesized nanoparticles were investigated by XRD, EDS, FESEM and TEM. The magnetic properties of the nanoparticles were characterized by vibrating sample magnetometry (VSM) superconducting quantum interference magnetometer (SQUID). The undoped samples show a diamagnetic behavior, whereas all the Fe-doped samples are ferromagnetic at room temperature having the magnetic moment of ~0.003-0.101 Am² kg⁻¹ (0.022-0.252 μ_B /Fe) at 10 kOe.

REFERENCES

- [1] P. V. Radovanovic and D. R. Gamelin, Phys. Rev. Lett. 91, 157202 (2006).
- [2] O. Perales-Perez, A. Parra-Palomino, Y. Zhu, R. Singhal, P. M. Voyles, W. Jia and M. S. Tomar. Nanotechnology. 18, 315606 (2007).
- [3] M. Venkatesan, P. Stamenov, L. S. Dorneles, R. D. Gunning, B. Bernoux, and J. M. D. Coey, Appl. Phys. Lett. 90, 242508 (2007).
- [4] X. H. Wang, J. G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi, and T. Ishigaki, J. Am. Chem. Soc. 127, 10982 (2005).
- S. Maensiri, P. Laokul, J. Klingkaewnarong, J Magn Magn Mater 302, 448 (2006).
- [6] J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2003).
- [7] M.P. Pechini, US Patent. No. 3,330,697, 11 July 1967.
- [8] K. Wongsaprom, E. Swatsitang, S. Maensiri, S. Srijanai, S. Seraphin. Appl. Phys. Lett. 90, 162506 (2007).
- S. Maensiri, K. Wongsaprom, E. Swatsitang, S. Seraphin, J. Appl. Phys. 102, 076110 (2007).