IEEE International Magnetics Conference Sacramento, California May 4-8, 2009

General Information

Special Events

Exhibits

Magnetics Society Information

Program

Author Index

EU-11

The structural transition and magnetic properties of lithium deintercalation in LiFePO4

I. Lee, S. Moon, I. Shim, C. Kim

Department of Nano and Electronic Physics, Kookmin University, Seoul, Korea, South

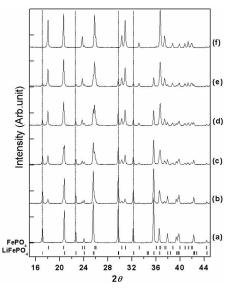
Introduction

Lithium iron phosphate is the most promising material for rechargeable lithium batteries with enhanced energy storage capacity that can be used in fuel cell. Since Goodenough and co-workers investigated the fascinating electrochemical property of LiFePO₄ [1], studies have been attempted to understand the mechanism of lithium intercalation/deintercalation and there have been reports on improved electrochemical property. Yonemura, *et al.* provided the experimental evidence for LiFePO₄/FePO₄ two-phase electrochemical reaction in Li_xFePO₄ during lithium intercalation (deintercalation) [2]. Recently, Delmas *et al.* explained the lithium deintercalation via 'domino-cascade model' [3]. This model described localized Fe²⁺/Fe³⁺ polarons have very fast reaction. The detailed analysis on the mol-rate of LiFePO₄/FePO₄ was done with Mössbauer spectroscopy [4].

In this paper, we report on the structural transition and magnetic properties of lithium deintercalation in LiFePO₄. Also we study the magnetic hyperfine interaction of Fe²⁺/Fe³⁺ in LiFePO₄/FePO₄ using by Mössbauer spectroscopy.

Experiments

The pure LiFePO₄ powder was synthesized using lithium carbonate (Li₂CO₃), iron(II) oxalate dehydrate (FeC₂O₄ \blacksquare H₂O), and ammonium dihydrogen phosphate (NH₄H₂PO₄) as the starting materials of the compound. They were grounded, followed by calcination at 300 °C. Then, the powder was pressed into a pellet and sealed in an evaculated quartz tube. This quartz tube was annealed at 700 °C for 10 h. Lithium deintercalation to obtain LiFePO₄/FePO₄ was done by chemical oxidation process. Pure LiFePO₄ powder with nitronium tetrafluorborate (NO₂BF₄) in acetonitrile solution was stirred at room temperature for 10 h in air. The proportion of LiFePO₄/FePO₄ powder was controlled by the concentration of NO₂BF₄ in acetonitrile solution.


The crystal structure of the each samples were examined using an X-ray diffractometer (XRD) with $Cu-K\alpha$ radiation and analyzed by Rietveld refinement. Mössbauer spectra were recorded from 4.2 K up to room temperature with a ^{57}Co source in Rh matrix.

Results and discussion

The crystal structure of LiFePO₄/FePO₄ powders were orthorhombic structure with space group Pnma. Fig.1 shows that there exists a mixture of LiFePO₄ and FePO₄ phase accord with Delmas et al. [4] As the concentration of NO₂BF₄ in acetonitrile solution increases, the intensity of LiFePO₄ phase decreases. At the same time, FePO₄ phase increases with the concentration of NO₂BF₄. This result confirms that the localized two crystallographic structure co-exist in mixed powders.

Fig.2 shows Mössbauer spectra of LiFePO $_4$ /FePO $_4$ at room temperature. The spectrum of LiFePO $_4$ (a) and FePO $_4$ (f) were fitted with single doublet which is describes Fe $^{2+}$ and Fe $^{3+}$ iron state according to the measured value of $\delta_{(a)}=1.1$ mm/s and $\delta_{(f)}=0.31$ mm/s. The electric quadrupole splitting of LiFePO $_4$ is larger than that of FePO $_4$ for LiFePO $_4$ ΔE_Q is 2.97 mm/s and for FePO $_4$ ΔE_Q is 1.53 mm/s. However, for (b), (c), (d) and (e) samples with varying NO $_2$ BF $_4$ concentration shows the spectra become asymmetric. Therefore, these spectra were fitted with the 2-doublet having mixed iron states of Fe $^{2+}$ /Fe $^{3+}$. As the sample approaches to FePO $_4$ (f), LiFePO $_4$ (a) absorption decreases with agrees with the XRD patterns of samples.

- [2] Yonemura, M., Yamada, A., Takei, Y., Sonoyama, N. & Kanno, R. J. Electrochem. Soc. 151, A1352–A1356 (2004).
- [3] C. Delmas, M. Maccario, L. Croguennec, F. Le Cras and F. Weill. Nature Mater. 7, 665-671 (2008).
- [4] D. X. Gouveia, V. Lemos, J. A. C. de Paiva, A. G. Souza Filho, and J. Mendes FilhoS. M. Lala, L. A. Montoro, and J. M. Rosolen. *Phys. Rev. B.* **72**, 024105 (2005).

Fig.1 XRD patterns of LiFePO $_4$ /FePO $_4$ samples at room temperature. (a) LiFePO $_4$, the concentration of NO $_2$ BF $_4$ for each samples (LiFePO $_4$: NO $_2$ BF $_4$) (b) 1: 0.1, (c) 1: 0.2, (d) 1: 0.3, (e) 1: 0.4 and (f) 1: 2.0 for FePO $_4$.

Fig.2 Mössbauer spectra of LiFePO₄/FePO₄ samples at room temperature.

INTERMAG 2009 155

^[1] Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. J. Electrochem. Soc. 144, 1188–1194 (1997).