International Conference on the Applications of the Mössbauer Effect

Programme and Abstracts

July 19th - 24th Vienna, Austria

TECHNISCHE UNIVERSITÄT WIEN

VIENNA
UNIVERSITY OF

Institute of Solid State Physics

MÖSSBAUER STUDIES FOR FeV2Se4

Bae Soon Son¹, Bo Ra Myoung², Sam Jin Kim² and Chul Sung Kim²

¹Korea Atomic Energy Research Institute, Daejeon 305-353, Korea

²Kookmin University, Seoul 136-702, Korea

Here we present magnetic susceptibility, XRD and Mössbauer spectroscopy studies of FeV₂Se₄. The inverse susceptibility of FeV₂Se₄ changes its slope at 74 K, which is due to a phase transition in the system. The effective Bohr magneton value is obtained to be 0.138 $\mu_{\rm B}$. Crystallographic structure, cation distribution, anion positions are determined by the Rietveld refinement of the Fullprof program. The crystal symmetry is found to be a monoclinic space group of I2/m [Fe (2a); Cr (4i); S (4i(u,0,w)] with its lattice constants, a_0 =6.152Å, b_0 =3.458Å, c_0 =11.726 Å, and β =91.30 °, respectively. The cation distribution from the x-ray diffraction refinements result show that V³⁺ exists on the A and B sites as [Fe_{0.95}²⁺V_{0.05}³⁺]_A[Fe_{0.05}²⁺V_{1.95}³⁺]_BSe₄. The Mössbauer spectra severely distorted the

The Mössbauer spectra severely distorted the asymmetric 8-line shape below 85 K, denoting a large orbital contribution. It agrees with the result of the temperature dependent susceptibility measurements. While, it shows a quadrupole doublet above 85 K, of which value decreases with increase of the temperature. It is noticeable that, in the temperature region 85 K \leq T \leq 300 K, the ratio of the intensity of the two lines R_q = A_1/A_2 increases rapidly from 1 to 1.30, where A_1 , A_2 correspond to the Mössbauer absorption area of the quadrupole splitting for the lower and higher energies, respectively. It is attributed to Goldanskii-Karyagin effect. We interpret it, that it is closely related to the anisotropic atomic vibration for an iron atom in FeV₂Se₄. Also, it accords with the result of the XRD refinement, slightly distorted local environment of the Se ions along the c-axis.

Table I: Results of refinement parameters of X-ray diffraction on FeV_2Se_4 [I2/m: A site (2a); B site (4i); S (4i (u,0,w))].

6.152
0.102
3.458
11.726
91.30

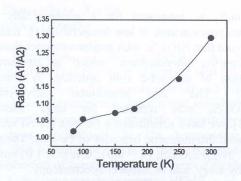


Figure 1. Temperature dependence on the ratio of intensity of the two line R_q = A_1/A_2 , where A_1 , A_2 correspond to Mössbauer absorption area.