www.icamd.or.kr

The 6th International Conference on Advanced Materials and Devices

December 9 ~11, 2009 Ramada Plaza Jeju Hotel, Jeju, Korea

Program and Abstracts

Organized by

Applied Physics Division, The Korean Physical Society
Quantum Metamaterials Research Center
Asia Pacific Center for Theoretical Physics
Center for Nanotubes and Nanostructured Composites
Quantum Photonic Science Research Center
National Core Research Center for Extreme Light Applications
Center for Subwavelength Optics
Center for THz-Bio Application Systems
Genter for Cross-coupled Complex Materials Research
WCU-QPD, School of Physics, KonKuk University
New and Renewable Energy Research Center, Ewha Womans University
Center for Subwavelength Nanowire Photonic Devices

In cooperation with

The Japan Society of Applied Physics
The Physical Society of Republic of China

Sponsored by

Korean Ministry of Education, Science and Technology National Research Foundation of Korea BK21 Department of Physics, Ewha Womans University Jeju Convention & Visitors Bureau

Spintronic

Synthesis and magnetic properties of geometrical frustration system Ni_{0.3}Fe_{0.7}Ga₂S₄

Bo Ra Myoung, Sam Jin Kim, and Chul Sung Kim
Department of Physics, Kookmin University,
Seoul 136-702, Republic Korea

We have investigated crystallographic and magnetic properties for Ni_{0.3}Fe_{0.7}Ga₂S₄ by x-ray, Mössbauer spectroscopy, and superconducting quantum-interference device (SQUID) magnetometry. X-ray analysis for polycrystalline Ni_{0.3}Fe_{0.7}Ga₂S₄ indicates trigonal structure with space group P-3m1. Fig 1. shows the temperature dependence of susceptibility χ in zero-field-cooled (ZFC) and field-cooled (FC) magnetization under 100 Oe for Ni_{0.3}Fe_{0.7}Ga₂S₄. The magnetic behavior shows an antiferromagnetic character with Curie-Weiss temperature, $\theta_W = -149$ K and the strong frustration factor, f = 5.63 defined as $|\theta_W|/T_N$. The effective moment was obtained to be $\mu_{\rm eff} = 4.34$ $\mu_{\rm B}$, which has almost same result of calculation, $\mu_{\rm eff} = 4.41$ $\mu_{\rm B}$ with only assuming spin contribution. The Mössbauer spectra show severely distorted 8-line shape due to large electric quadrupole interaction at 4.2 K. The charge state of Fe ions is ferrous (Fe²⁺) as characterized by isomer shift $\delta = 0.60$ mm/s at room temperature.

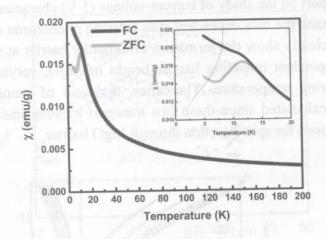


Fig1. The susceptibility for SQUID magnetometer data, under H = 100 Oe, and zero-field-cooled (ZFC) and field-cooled (FC) curve for $Ni_{0.3}Fe_{0.7}Ga_2S_4$.