ICAMD 2009
The 6th International Conference on Advanced Materials and Devices
December 9 ~11, 2009
Ramada Plaza Jeju Hotel, Jeju, Korea

Program and Abstracts

Organized by
Applied Physics Division, The Korean Physical Society
Quantum Metamaterials Research Center
Asia Pacific Center for Theoretical Physics
Center for Nanotubes and Nanostructured Composites
Quantum Photonic Science Research Center
National Core Research Center for Extreme Light Applications
Center for Subwavelength Optics
Center for THz-Bio Application Systems
Center for Cross-coupled Complex Materials Research
WCU-QPD, School of Physics, KonKuk University
New and Renewable Energy Research Center, Ewha Womans University
Center for Subwavelength Nanowire Photonic Devices

In cooperation with
The Japan Society of Applied Physics
The Physical Society of Republic of China

Sponsored by
Korean Ministry of Education, Science and Technology
National Research Foundation of Korea
BK21 Department of Physics, Ewha Womans University
Jeju Convention & Visitors Bureau
Synthesis and magnetic properties of geometrical frustration system \(\text{Ni}_{0.3}\text{Fe}_{0.7}\text{Ga}_2\text{S}_4 \)

Bo Ra Myoung, Sam Jin Kim, and Chul Sung Kim
Department of Physics, Kookmin University,
Seoul 136-702, Republic Korea

We have investigated crystallographic and magnetic properties for \(\text{Ni}_{0.3}\text{Fe}_{0.7}\text{Ga}_2\text{S}_4 \) by x-ray, Mössbauer spectroscopy, and superconducting quantum-interference device (SQUID) magnetometry. X-ray analysis for polycrystalline \(\text{Ni}_{0.3}\text{Fe}_{0.7}\text{Ga}_2\text{S}_4 \) indicates trigonal structure with space group P-3m1. Fig 1. shows the temperature dependence of susceptibility \(\chi \) in zero-field-cooled (ZFC) and field-cooled (FC) magnetization under 100 Oe for \(\text{Ni}_{0.3}\text{Fe}_{0.7}\text{Ga}_2\text{S}_4 \). The magnetic behavior shows an antiferromagnetic character with Curie-Weiss temperature, \(\theta_W = -149 \) K and the strong frustration factor, \(f = 5.63 \) defined as \(|\theta_W|/T_N \). The effective moment was obtained to be \(\mu_{\text{eff}} = 4.34 \mu_B \), which has almost same result of calculation, \(\mu_{\text{eff}} = 4.41 \mu_B \) with only assuming spin contribution. The Mössbauer spectra show severely distorted 8-line shape due to large electric quadrupole interaction at 4.2 K. The charge state of Fe ions is ferrous (Fe\(^{2+}\)) as characterized by isomer shift \(\delta = 0.60 \) mm/s at room temperature.

![Graph of susceptibility vs. temperature](image)

Fig 1. The susceptibility for SQUID magnetometer data, under \(H = 100 \) Oe, and zero-field-cooled (ZFC) and field-cooled (FC) curve for \(\text{Ni}_{0.3}\text{Fe}_{0.7}\text{Ga}_2\text{S}_4 \).