11[™] JOINT MMM–INTERMAG CONFERENCE

January 18–22, 2010 Washington, DC

DIGESTS

ER-14

The magnetic phase changing for titanium oxide with proton irradiation.

S. Hvun¹, K. Choi², S. Kim², C. Kim¹

1. Physics, Kookmin University, SEOUL, Korea, South; 2. Laboratory of Pohang Emergent Materials and Department of Physics, Pohang University of Science and Technology, Pohang, Korea, South

Introduction

Diluted magnetic semiconductors (DMS) have been increasing scientific interest as promising candidates for the spintronic devices. Recent research indicate ferromagnetism in graphite by proton irradiation [1]. Coey et al. proposed the F-center exchange model where ferromagnetic coupling is promoted by an electron trapped in an oxygen vacancy [2]. Griffin et al. observed the ferromagnetic properties in insulating Co-doped ${\rm TiO_2}$ annealed in ultrahigh vacuum, suggesting that free charge carriers are not required for ferromagnetic ordering [3]. P. Esquinazi et al. provide that proton irradiation on graphite samples triggers ferro- or ferrimagnetism [4]. In this work, we have investigated the magnetic properties of anatase Fe-doped ${\rm TiO_2}$ by proton irradiation.

Experiments

Anatase $Ti_{0.99}^{57}Fe_{0.01}O_2$ compounds were fabricated by a sol-gel process. The solution, which was dissolved in mixed solvents [acetic acid : 2-methoxyethanol = 1 : 3] was refluxed at 80 °C for 12 h to allow the gel formation and then dried at 120 °C in a dry oven for 24 h. The dried mixtures were ground and annealed at 550 °C for 2 h in air. The ⁵⁷Fe doped TiO_2 of a diameter 5 mm pellets were irradiated with proton beam (6.66 MeV, 26 nA). Two irradiations were consecutively applied to sample, stage NO. 1: homogeneous irradiation, NO. 2: dose: $1 \text{ pC/}\mu\text{m}^2$ (1 pC), No.3: dose: $1 \text{ pC/}\mu\text{m}^2$ (10 pC). To estimate the defect density created by the proton beam, Monte Carlo simulations (SRIM 2004) were performed. The crystal structures of the samples were examined by x-ray diffraction with Cu K α radiation (λ = 1.5406 Å). Magnetic properties were characterized by superconducting quantum interference device magnetometer (SQUID). The Mössbauer spectra were recorded using conventional and electromechanical spectrometer with a ⁵⁷Co source in a rhodium matrix.

Results and Discussion

X-ray diffraction patterns of ${\rm Ti}_{0.99}^{57}{\rm Fe}_{0.01}{\rm O}_2$ with proton irradiation showed a pure anatase single phase and the crystal structure was determined to be a tetragonal structure with a space group ${\rm I4}_1/amd$. In both patterns above, one could not find any different peak positions of Fe or Fe-O systems other than anatase dioxide within the instrumental resolution limit. The lattice constants a_0 and c_0 , and the resultant unit-cell volume of the present anatase samples are found to be close to the ones of ${\rm TiO}_2$ with its lattice constants a_0 = 3.786 Å and c_0 = 9.520 Å obtained by the same fabrication process.

The magnetization curves of 1 and 10 pC proton irradiated $Ti_{0.99}^{57}Fe_{0.01}O_2$ compound were measured as a function of magnetic field using SQUID. Figure 1 exhibits magnetic hysteresis loops at room temperature (RT) for the anatase samples measured up to the field of 6 T. 1 pC sample shows a small magnetic moment with the value of 0.08 emu/g at RT. On the contrary, the magnetization curves of 10 pC sample show a strongly enhanced ferromagnetic behavior.

Figure 3 exhibits Mössbauer spectra of 1 and 10 pC samples at RT. The spectra of 1 pC sample consist of the magnetically ordered sextet and the paramagnetic doublet. The isomer shift values at RT for the sextet and the doublet of 1 pC sample are found to be 0.42 and 0.21 mm/s relative to the Fe metal, respectively, which are consistent with the high spin Fe³⁺ charge state. The electric quadrupole splitting (ΔE_Q) of central doublet at RT was 1.12 mm/s. The 10 pC spectra were substantially different from the spectra of 1 pC sample. The new doublet for 10 pC sample is attributable to the

Fe²⁺ state with isomer shift value of 1.00 mm/s and large ΔE_Q = 2.08 mm/s at RT. It could explain that some of Fe³⁺ ions of 10 pC sample are converted to Fe²⁺, which enhanced the ferromagnetic properties. Therefore, it is suggested that the created Fe²⁺ ions as a result of proton irradiation are responsible for the observed ferromagnetic enhancement in this system.

- [1] Kyu Won Lee et. al, Phys. Rev. Lett. 97, 137206 (2006)
- [2] J. M. D. Coey et. al, Appl. Phys. Lett. 84, 1332 (2004).
- [3] K. A. Griffin et. al, Phys. Rev. Lett. 94, 157204 (2005).
- [4] P.O. Lehtinen et. al, Phys. Rev. Lett. 93, 187202 (2004).

Fig. 1 Magnetic hysteresis loops of ${\rm Ti_{0.99}}^{57}{\rm Fe_{0.01}O_2}$ with proton irradiation at RT.

TiO2+57Fe1%

Fig. 2 Mössbauer spectra of Fe doped TiO₂ samples with proton irradiation at RT.