ISAMMA 2010

The 2nd International Symposium on Advanced Magnetic Materials and Applications
July 12–16, 2010, Sendai, Japan

Abstracts

Organized by
The organizing committee of ISAMMA 2010

Sponsored by
The Magnetics Society of Japan
The Korean Magnetics Society
The Taiwan Association for Magnetic Technology
The Chinese Society for Magnetic Materials and Application
Vietnam Physical Society
The Data Storage Institute (Singapore)
Magnetic properties of FeGa$_2$O$_4$ thin film

Bo Ra Myoung$^{(a)}$, Sam Jin Kim$^{(a)}$, Taejoon Kouh$^{(a)}$, Yasushi Hirose$^{(b)}$, Tetsuya Hasegawa$^{(b)}$, Chul Sung Kim$^{(a)}$.

$^{(a)}$ Department of Physics, Kookmin University, Seoul 136-702, Korea
$^{(b)}$ Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan and Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012, Japan

e-mail: cskim@kookmin.ac.kr

FeGa$_2$O$_4$ exhibits interesting magnetic properties, such as spin-freezing, spin-glass phase, spin-disorder, and frustration effects. FeGa$_2$O$_4$ is inverse spinel with long-range ordering at low temperature. Especially FeGa$_2$O$_4$ show the presence of superparamagnetic clusters behavior at low temperature. The magnetic properties of thin film FeGa$_2$O$_4$ grown by using pulsed-laser deposition (PLD) have been studied and compared with powder, and single crystal of FeGa$_2$O$_4$.

Magnetic thin film of FeGa$_2$O$_4$ was grown onto MgO (100) substrate by PLD using FeGa$_2$O$_4$ target and excimer laser with $\lambda = 248$ nm at a repetition rate of 2 Hz and a fluence of 20 mJ. The substrate temperature was at 600 °C with hydrogen pressure 1.0×10^{-3} Torr. The resulting thin film of FeGa$_2$O$_4$ was confirmed to be single phase with a spinel structure and lattice constant $a_0 = 8.34$ Å. Magnetic measurements were carried out by superconducting quantum interference device (SQUID) magnetometer. The temperature dependent zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves under the 400 Oe show no anomaly from 2 to 300 K as in paramagnetic phase. However the hysteresis-loops at 20, 100, and 300 K are appeared to be ferrimagnetic as shown in Fig. 1. In FeGa$_2$O$_4$ powder, it is reported that superparamagnetic behavior is caused by small ferrimagnetic clusters above 15 K.

![Magnetic Properties](image.png)

Figure 1. Magnetization - hysteresis (M-H) curves at 20, 100, and 300 K for thin film of FeGa$_2$O$_4$.