

ABSTRACTS www.magnetism.org

Ba₂Co₂Fe₁₂O₂₂. I. Lee¹, H. Cho¹ and C. Kim¹I. Department of Physics, Kookmin University, Seoul, Korea, Republic of The cobalt substituted Y-type barium ferrite Ba₂Co₂Fe₁₂O₂₂ (Co₂Y) was prepared by solid state reaction method. From the refined X-ray diffraction patterns, there are six interstitial sites for Fe and Co ions such as $3b_{yy}$, $6c_{yy}$, $6c_{\text{vi}}$, $18h_{\text{vi}}$, $6c_{\text{iv}}$ and $3a_{\text{vi}}$. Also, the crystal structure was found to be a single-phase rhombohedral structure with the lattice constants $a_0=5.8638$ Å and c_0 =43.5259 Å (space group: R-3mH). The Bragg factor $R_{\rm B}$ and $R_{\rm F}$ were 5.83% and 3.81%, respectively. The Mössbauer spectra of Co_2Y were taken in the temperatures range 4.2 K $\leq T \leq 715$ K. The spectra below Curie temperature ($T_a=715$ K) were fitted by a least-squares technique with six interstitial Fe sites corresponding to the $3b_{yy}$, $6c_{yy}$, $6c_{yy}$, $18b_{yy}$, $6c_{yy}$ and $3a_{yy}$ subspectrum. From the analyzed Mössbauer spectrum, the site occupancy in six interstitial sites of the Co and Fe ions were calculated by the relative subspectrum absorption areas.[1] The occupation number of Co ions in the system determined to be 0.55 and 0.35 for $18h_{yy}$ and $6c_{yy}$ sites, respectively. This result is an experimental evidence of the site occupancy distribution in the six interstitial Fe³⁺ sites for Ba₂Co₂Fe₁₂O₂₂.

[1] Z. W. Li, L. Guoqing, N.-L. Di, Z.-H. Cheng, and C. K. Ong, Phys. Rev.

B 72, 104420 (2005)

DW-10. Mössbauer spectra of the Co substituted Y-type Ba-ferrite