Investigation of Fe$_3$O$_4$ core/ mesoporous SiO$_2$ shell microspheres based on Mössbauer spectroscopy.

Y. Li, I. Shim, C. Kim
Department of Physics, Kookmin University, Seoul, Republic of Korea

Introduction

Recently, magnetic iron oxide nanoparticles have been considered to be an ideal candidate for biological application, both as a tag for sensing and imaging, and as an activity agent for antitumor therapy[1, 2]. The requirements for any biomedical application of magnetic colloids include the chemical stability, biocompatibility. Magnetic microspheres consisting of Fe$_3$O$_4$@SiO$_2$ core-shell have attracted attention as bio/medical application for its low coercivity, high saturation magnetization, and chemically stabilization[2, 3].

In this paper, we have studies the magnetic properties and hyperfine interaction of Fe$_3$O$_4$ and Fe$_3$O$_4$ core/SiO$_2$ shell, investigated with the magnetization curve and Mössbauer spectroscopy experiment.

Experiment

The Fe$_3$O$_4$ core and Fe$_3$O$_4$ core/mesoporous SiO$_2$ shell microspheres were prepared by a solvothermal reaction method. The crystal structure of the sample was examined by X-ray diffraction(XRD) with CuKα (λ= 1.540562 Å) radiation. The size and shape of the products were examined by high-resolution transition electron microscopy(HR-TEM). The magnetic properties were characterized using a vibrating sample magnetometer(VSM) and Mössbauer spectroscopy. Mössbauer spectra of Fe$_3$O$_4$ and Fe$_3$O$_4$ core/SiO$_2$ shell were recorded from 4.2 K up to room temperature with a 57Co source in Rh matrix.

Results and discussion

The crystal structure of Fe$_3$O$_4$ core was determined by the Rietveld refinement technique. The crystal structure of the Fe$_3$O$_4$ core was cubic structure of $Fd-3m$ with lattice constant a_0 = 8.395 Å. The Fe$_3$O$_4$ core/SiO$_2$ shell structure was confirmed by TEM as shown in Fig. 1. According to the measurement for magnetization curves at room temperature, the saturation magnetization of Fe$_3$O$_4$ and Fe$_3$O$_4$ core/SiO$_2$ shell microspheres are determined to be 77.0 and 17.0 emu/g, respectively. The Mössbauer spectra for the samples were analyzed of two six-line hyperfine patterns. The fitted data apparently verified that the prepared Fe$_3$O$_4$ and Fe$_3$O$_4$ core/SiO$_2$ shell samples have magnetite [Fe$^{3+}$$_4$][Fe$^{2+}Fe^{3+}$]$_{16}O_{44}$. It is noticeable that the Mössbauer absorption area ratio between tetrahedral A($8a$) and octahedral B($16d$) site of the Fe$_3$O$_4$ core/SiO$_2$ shell shows enormous change compare with that of Fe$_3$O$_4$. The A and B site the area ratio of sextet increase from 40 : 60 to 55 : 45 for Fe$_3$O$_4$ and Fe$_3$O$_4$ core/SiO$_2$ shell, respectively, at room temperature. The magnetic hyperfine fields of A and B site in Fe$_3$O$_4$ are H_{hf}(A) = 517 kOe and H_{hf}(B) = 493kOe, and Fe$_3$O$_4$ core/SiO$_2$ shell spheres are H_{hf}(A) = 519 kOe and H_{hf}(B) = 511 kOe, at 4.2 K. Hyperfine fields of A and B site in Fe$_3$O$_4$ core/SiO$_2$ shell spheres are H_{hf}(A) = 486 kOe and H_{hf}(B) = 449 kOe, at room temperature, as shown in Fig. 2.