12th Joint MMM–InterMAG Conference
January 14–18, 2013
Chicago, Illinois, USA

ABSTRACTS
CW-05. Study of site occupancy in single crystalline Zn$_x$Fe$_{3-x}$O$_4$ microspheres based on Mössbauer analysis.

Y. Li1, S. An2 and C. Kim1

1Physics, Kookmin University, Seoul, Republic of Korea; 2Corporate R&D Institute, Samsung Electro-Mechanics, Suwon, Republic of Korea

The 3d-transition metal-oxide nano/microparticles have been considered to be an ideal candidate for biological applications with unique physical properties [1, 2]. A series of monodispersed Zn$_x$Fe$_{3-x}$O$_4$ ($x=0, 0.05, 0.1, 0.2, 0.4$) microspheres have been prepared by the solvothermal reaction technique. From the Rietveld refinement analysis, the crystal structure was determined to be cubic spinel with lattice constant and X-ray density, linearly increasing from 8.3956 to 8.4315 Å , and 5.1971 to 5.2158 g/cm3, with the Zn concentration. HR-TEM measurements showed that the size of the monodispersed particles was around 200–300 nm as well as diffraction patterns with single crystalline spots. From the saturation magnetization (M_s) and coercivity (H_c) as a function of Zn concentration x in Fig. 1, we observed that M_s and H_c values at 295 K increase with x up to $x=0.05$ and then decrease monotonously as x increases above 0.4. We have analyzed the Mössbauer spectra as 4 sets with six-lines of tetrahedral A site and octahedral B_1 and B_2 sites as well as including paramagnetic phase of a doublet at 295 K, as shown in Fig. 2. The values of the hyperfine field at A, B_1, and B_2 sites decrease from 488 to 453 kOe, 458 to 412 kOe, and 452 to 369 kOe with Zn concentration. From the isomer shift values, the valance state of A, B_1 sites and doublet were determined to be ferric, while the B_2 site was ferrous. The corresponding area ratio of A site decreased by 40–25 % while that of B_1, B_2 site and doublet sets increased by 60–63 %, and 0–12 %, as the Zn concentration changed from $x=0$ to 0.4. Here, the changes in the area ratios of A, B sites and doublet set are originated from the site preference of cation in Zn$_x$Fe$_{3-x}$O$_4$ microspheres. This site preference, depending on the amount of Zn$^{2+}$ ion substituted in A site, affects the hopping between Fe$^{2+}$ and Fe$^{3+}$ ions, and the super-exchange interaction A-B and B-B between A and B sites [2, 3].