12TH JOINT MMM—INTERMAG CONFERENCE

January 14–18, 2013 Chicago, Illinois, USA

ABSTRACTS

776 ABSTRACTS

The T_c and T_{comp} (inset) are smooth functions of doping.

 ^{155}Gd Mössbauer spectra of $GdCo_{12\text{-}x}Fe_xB_6.$

GU-09. Investigation of spin ordering in antiferromagnetic $Fe_{1-x}Mn_x$. PO_4 with Mössbauer spectroscopy. W. Kwon 1 , B. Lee 2 and C. Kim 1 I. Department of Physics, Kookmin University, Seoul, Republic of Korea; 2. Department of Physics, Hankuk University of Foreign studies, Yongin, Kyungki, Republic of Korea

We have investigated the spin ordering in Fe_{1-x}Mn_xPO₄ samples, as a possible cathode material for rechargeable lithium ion battery, with antiferromagnetic structure below Né el temperature (T_N) [1-2]. The prepared $Fe_{1,x}Mn_xPO_4$ (x =0.0, 0.1, and 0.3) samples have orthorhombic structures with space group of Pnma [3]. These samples show the magnetic phase transition, caused by the strong crystalline field at the MO₆ octahedral sites. The lattice constants of the $Fe_{1-x}Mn_xPO_4$ samples were determined to be $a_0 = 9.814$ Å, $b_0 = 5.787$ Å, and $c_0 = 4.783 \text{ Å for } x = 0.0, a_0 = 9.833 \text{ Å}, b_0 = 5.811 \text{ Å}, \text{ and } c_0 = 4.786 \text{ Å for } x = 0.00 \text{ Å}$ 0.1, and $a_0 = 9.979$ Å, $b_0 = 5.895$ Å, and $c_0 = 4.799$ Å for x = 0.3. According to the temperature dependent magnetic susceptibility of Fe_{1-x}Mn_xPO₄, all samples showed abnormal antiferromagnetic behaviors. The Né el temperature $(T_{\rm N})$ decreased from 114 K at x = 0.0 to 97 K at x = 0.3 with Mn concentrations. The magnetization of $\operatorname{Fe}_{1-x}\operatorname{Mn}_x\operatorname{PO}_4$ decreases until the temperature reaches the spin-reorientation $(T_{\rm S})$ temperature, and then starts increasing as the temperature increases up to T_N . The T_S of the ${\rm Fe}_{1-x}{\rm Mn}_x{\rm PO}_4$ were found to be 30, 27, and 24 K for x = 0.0, 0.1, and 0.3. In order to investigate the hyperfine interaction of $\mathrm{Fe^{3^+}}$ ions in $\mathrm{FeO_6}$ octahedral sites, Mö ssbauer spectra of Fe_{1-x}Mn_xPO₄ have been taken at various temperatures from 4.2 to 295 K. The isomer shift (δ) values of the Fe_{1-x}Mn_xPO₄ were between 0.31 and 0.43 mm/s,

indicating the high spin state of Fe³+ at all temperatures. The magnetic hyperfine field ($H_{\rm hf}$) and electric quadrupole splitting ($\Delta E_{\rm Q}$) values of Fe $_{0.9}{\rm Mn}_{0.1}{\rm PO}_4$ at 4.2 K were determined to be $H_{\rm hf}$ = 497 kOe and $\Delta E_{\rm Q}$ = 2.15 mm/s. We have also observed the abrupt changes in $H_{\rm hf}$ and $\Delta E_{\rm Q}$ at 27 K, and decrease in $T_{\rm S}$ of Fe $_{1.x}{\rm Mn}_x{\rm PO}_4$ with Mn concentration. Our study suggests that these changes in Fe $_{1.x}{\rm Mn}_x{\rm PO}_4$ are originated from the strong electric crystalline field and spin-obit coupling of FeO $_{\rm A}$ octahedral site.

[1] S. Chung, J. Kim, Y. Kim, and Y. Lee, Adv. Mater. 23, 1398 (2011).
[2] S. P. Ong, V. L. Chevrier, and G. Ceder, Phys. Rev. B 83, 075112 (2011).
[3] W. Kim, C. H. Rhee, H. J. Kim, S. J. Moon, and C. S. Kim, Appl. Phys. Lett. 96, 242505 (2010).

Fig. 1. The temperature dependence of magnetic susceptibility for Fe_{1-} $_{\nu}Mn_{\nu}PO_{4}$ (x=0.0,0.1, and 0.3).

Fig. 2. Mössbauer spectra of Fe_{0.9}Mn_{0.1}PO₄ at various temperatures.

GU-10. Magnetic States of UCuGe1-xSnx Compounds Found by 119Sn Mössbauer Spectroscopy. V. Krylov 1. Institute of Nuclear Physics, Moscow State University, Moscow, Russian Federation

The non-collinear antiferromagnetic (AFM) compounds UCuGe and UCuSn with competing exchange interactions crystallize in ordered derivatives of hexagonal CaIn2 structure: hexagonal SrPtSb-type and orthorhombic P21cn structure, respectively. In these compounds, uranium magnetic moments are equal to about 2.0 μB and are ordered below TN =62(2) K [1, 2]. The hyperfine interactions on 119Sn nuclei of UCuGe1-xSnx compounds (X = 0.0 -