

General Program & Exhibit Guide

Sociedad Mexicana de Materiales A.C.

S4F – P006 TRI-STABLE MEMRISTIVE SWITCHING OF A Cu/TaO./Pt CELL Fran Kurnia¹. Chunli Liu¹. Chang Uk Jung¹. Chul Sung Kim², and Bowha Lee¹ ¹Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791, South Korea, ²Department of Physics, Kookmin University, Seoul 136-702, South Korea.

TRI-STABLE MEMRISTIVE SWITCHING AT PRISTINE STATE OF A Cu/TaO_x/Pt CELL

Fran Kurnia¹, Chang Uk Jung¹, Bowha Lee¹, Chul Sung Kim² and, <u>Chunli Liu</u>¹. ¹Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791, South Korea. ²Department of Physics, Kookmin University, Seoul 136-702, South Korea.

A tri-stable memristive switching was observed on a Cu/TaO_x/Pt device. The underlying switching mechanism was suggested through the alteration of compliance current. The rectified switching behavior was observed while we were setting 5 μ A as the compliance current; the typical unipolar and square-shaped bipolar switching were obtained by setting 100 μ A and 10 mA, respectively, as the compliance current. It was postulated that the switching mechanism in Cu/TaO_x/Pt device was closely related to the accumulation of Cu^{z+} ions at the cathode interface.^[1] The mechanism of the tri-stable memristive switching presented in this work was attributed to the migration of Cu^{z+} ions through the initial setting value of the compliance current, while the rectification of *I-V* behavior could be attributed to the modulation of the Schottky-like interfaces.^[2] The assertion was further supported by performing *C-V* measurement on the Cu/TaO_x/Pt device.

Keywords: TaO_x, resistive switching, thin film, compliance current

References:

[1] T. Tsuruoka, et.al. Nanotechnol. 21, 425205 (2010)

[2] F. Kurnia, et.al., in preparation

Presenting author's email: e-mail address: chunliliu@hufs.ac.kr