

The 8th International Conference on Advanced Materials and Devices

ICAMD 2013

December 11~13, 2013 Ramada Plaza Jeju Hotel, Jeju, Korea

Organized by

KPS Applied Physics Division, The Korean Physical Society

Quantum Metamaterials Research Center

CNRS-Ewha International Research Center (CERC)

Center for Functional Interfaces of Correlated Electron Systems,

Institute for Basic Science

Center for Nanoparticle Research, Institute for Basic Science

Crystal Bank, Pusan National University

Institute of Innovative Functional Imaging, Chung-Ang University

KAIST Micro/Nano-Photonics Laboratory

KAIST SDC Display Research Center

Sponsored by

Korea Tourism Organization **WizOptics** NT-MDT

UniNano Tech Co., Ltd

K(2S 한국물리학회

THU-SP-P12 High frequency properties of Ba₂CoZnFe₁₂O₂₂ depend on synthesis condition

Jung Tae Lim, Mi Hee Won, Chul Sung Kim (Kookmin University)

High frequency properties of Ba₂CoZnFe₁₂O₂₂ depend on synthesis condition

Jung Tae Lim, Mi Hee Won, Chul Sung Kim Department of Physics, Kookmin University, Seoul, 136-702, South Korea

The polycrystalline sample of Ba₂CoZnFe₁₂O₂₂ was synthesized by solid state reaction methods. The BaCO₃, CoO, ZnO, and Fe₂O₃ of commercial grade powders were used as the starting materials, and mixed by using ball-mill. The mixture were mixed with polyvinyl alcohol, and pressed into the toroids. The toroids were sintered with various sintering temperature at 1050, 1100, 1150, and 1200 °C for 3 h in air. The crystal structure and magnetic properties of Ba₂CoZnFe₁₂O₂₂ sample was characterized by using x-ray diffractometer (XRD), vibrating sample magnetometer (VSM), network analyzer, and Mössbauer spectrometer. From the XRD patterns analyzed by Rietveld refinement, we confirmed to be rhombohedral structure with space group of R-3m. The density of samples increased with increasing sintering temperature. From the magnetic hysteresis curves up to 10 kOe at 295 K, the saturation magnetization (M_s) of Ba₂CoZnFe₁₂O₂₂ samples in various sintered at 1050, 1100, 1150, and 1200 °C were found to $M_s = 33.0, 33.6, 32.9,$ and 33.0 emu/g, respectively. The coercivity (H_c) of samples decreased with increasing sintering temperature. Complex permeability and permittivity of Ba₂CoZnFe₁₂O₂₂ samples in various sintering temperatures were measured by network analyzer between 100 MHz to 4 GHz. The permeability and $\tan \delta$ of samples increased with increasing sintering temperature. Our study shows that the permeability of sintered 1050 °C sample is 3.20 at 1.20 GHz with tan δ