977

BV-14 Mössbauer studies and magnetic properties of Zn substituted W-type Ba-ferrite.

H. Kim¹, C. H. Rhee¹, B. W. Lee², C. S. Kim¹

INTRODUCTION

Hexagonal Ba-ferrites have a crystalline structure which the called S, R and T blocks. These crystalline structure order determine magnetic, microwave properties and it could be indicated type of M, W, X, Y, Z. [1, 2] Especially, W-type hexaferrites (BaCo₂Fe₁₆O₂₇; Co₂W) show outstanding magnetic, microwave absorption characteristics which compared to the other type of hexaferrites. In this study, we studied properties of Zn substituted BaCo_{2-x}Zn_xFe₁₆O₂₇ with Mössbauer spectroscopy, XRD (xray diffractometer), VSM (vibrating sample magnetometer).

EXPERIMENT PROCEDURES

The Zn substitued Co₂Wsamples were synthesized by solid-state reaction method. Starting materials were Fe₂O₃, BaCO₃, ZnO, Co₃O₄. The mixture in distilled water was ball milled for 24h and calcined at 1275 °C for 3h. The calcined powder was ball milled for 12h. The crystal structure were examined by XRD with Cu- $K\alpha$ radiation ($\lambda = 1.5406$ Å) and analyzed by Rietveld refinement program. Its magnetic properties were investigated by VSM measurements. The Mössbauer spectra were recorded using spectrometer using a ⁵⁷Co γ -ray source in a rhodium matrix for a constant acceleration mode.

RESULTS AND DISCUSSION

XRD patterns (Fig. 1) of BaCo_{2-z}Zn_xFe₁₆O₂₇ were analyzed by using Rietveld refinement method with Fullprof program. From the refined XRD patterns, the crystal structure of the Co₂W were determined to be hexagonal with space group P6₃/mmc at room temperature. The lattice constants of BaCo₂Fe₁₆O₂₇ were a₀ = 5.9055 Å, and c₀ = 32.9365 Å, respectively. Lattice constants a₀ and c₀ decrease with increasing Zn contents. It is obvious that ionic radius of Zn²⁺ = 0.074 nm is smaller than radius of Co²⁺ = 0.082 nm.

To investigate the magnetic properties of $BaCo_{2-x}Zn_xFe_{16}O_{27}$, the M-H hysteresis loops are measured by VSM at room temperature. We obtained the value of magnetization at 20 kOe (M_{20}), coecivity (H_c) for all the synthesized samples. The values of $M_{20} = 75.67$ emu/g, $H_c = 162.08$ Oe and $M_{20} = 78.48$ emu/g, $H_c = 64.17$ Oe, respectively. As Zn^{2+} substituted for Co^{2+} , the value of M_{20} was increased and the value of H_c was decreased. Increasing the value of M_{20} is due to Zn ion preferred to the tetrahedral site. The temperature dependence of zero-field-cooled (ZFC) and the field-cooled (FC) magnetizations curves are measured under applied field of 100 Oe between 70 and 780 K. We determined Curie temperature (T_c) and T_c decrease with increasing Zn contents.

Co₂W have seven iron ions crystallographic sites of 4f, 6gVI, 4fVI, 4eIV, 4fIV, 12kVI, 2dV and it can be obtained five magnetic site of 4f, 6gVI+4fVI, 4eIV+4fIV, 12kVI, 2dV.[3] The fitted subspectra of the Mössbauer spectra (fig. 2) were obtained for all samples. With five sextets for Fe sites of Co₂W spectra were least-squares fitted. The values of magnetic hyperfine field were decreased with Zn ions contents increasing. The fitted relative area ratio of Mössbauer spectra reveals that Zn ions affect the area of iron ion, when Zn substituted. With increasing non-magnetic Zn ions contents, the occupation area ratio of down-spin site (4eIV+4fIV) was decreased. Therefore, it is obvious that the Zn ions preferentially occupy the tetrahedral sublattices, leading to increase in M_{20} .

Reference

- G. Albanese, J. Phys. Colloques, 38, C1-85 (1977)
- [2] H. Kojima, in Ferromagnetic Materials, edited by E. P. Wohlfarth (North Holland, Amsterdam) 3, 305–391 (1982)
- [3] X. Z. Zhou, I. Horio, A. H. Morrish and Z. W. Li, IEEE Trans. Magn. 48, 11, 3414 3417 (1991)

Department of Physics, Kookmin University, Seoul, South Korea; Department of Physics, Hankuk University of Foreign Studies, Yongin, South Korea

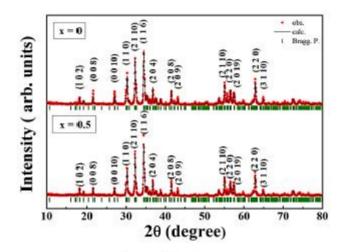


Fig.1 XRD patterns of $BaCo_{2-x}Zn_xFe_{18}O_{27}$ (x = 0, 0.5) at 295 K and refined by using the Rietveld refinement method with Fullprof program.

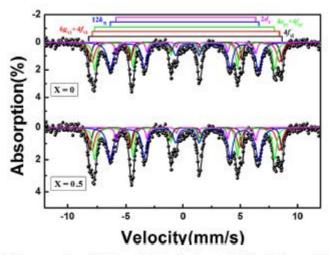


Fig.2 The fitted Mössbauer spectra of $BaCo_{2-x}Zn_xFe_{16}O_{27}$ (x = 0, 0.5) with five sextets (4f, $6g_{VI}+4f_{VI}$, $4e_{IV}+4f_{IV}$, $12k_{VI}$, $2d_V$) at 295 K.