Investigation of spin reorientation in YMn$_{1-x}$Fe$_x$O$_3$ ($x = 0.55, 0.6, 0.7, 0.8, 0.9, 1.0$) by Mössbauer spectroscopy. J. Lim1, Y. Choi2, B. Lee3 and C. Kim1

1Department of Physics, Kookmin University, Seoul, Republic of Korea; 2Department of Physics, Yonsei University, Seoul, Republic of Korea; 3Department of Physics, Hankuk University of Foreign studies, Yongin, Republic of Korea

The YMn$_{1-x}$Fe$_x$O$_3$ ($x = 0.55, 0.6, 0.7, 0.8, 0.9, 1.0$) polycrystalline samples were prepared by the solid-state-reaction method. The crystal structure and magnetic properties of samples were investigated with x-ray diffractometer (XRD), vibrating sample magnetometer (VSM), and Mössbauer spectroscopy. From the XRD patterns analyzed by Rietveld refinement at 295 K, all samples were single-phased with the Bragg factor (R_B) and structure factor (R_F) less than 5 % and confirmed to be orthorhombic with space group Pnma. With increasing Fe ion contents, the lattice parameter a_0 decreases whereas b_0 and c_0 increase. From the temperature dependence of magnetization curves under 100 Oe between 4.2 and 500 K, we observed the decrease of spin reorientation (T_{SR}) with increasing Fe ion contents. However, for $x = 1.0$ sample, showed the disappearance of T_{SR}. Mössbauer spectra of all samples were obtained at various temperature ranging from 4.2 to 500 K, and below T_C were fitted by least-square method on the function of the Fe atom distribution. Isomer shift (δ) values of all samples indicate that the charge states are Fe$^{3+}$. In addition, the magnitude and slope of the temperature dependence of the hyperfine field (H_{hf}), averaged electric quadrupole shift $<E_Q>$, and averaged isomer shift $<\delta>$ have shown abrupt changes around T_{SR} due to the change in charge states of Mn ions.