

IEEE International Magnetics Conference

China National Convention Center May 11-15, 2015, Beijing, China **<u>BR-13</u>**. Electromagnetic nondestructive evaluation of mechanical strength in flake and spheroidal graphite cast irons. *Y. Kamada*¹, S. Masuda¹, T. Kowata¹, S. Hiratsuka¹ and H. Kage² 1. Faculty of Engineering, Iwate University, Morioka, Japan; 2. Kusaka Rare Metal Products Co., Tokyo, Japan

<u>BR-14</u>. Investigation of magnetic properties of Sr doped Ba_{3-x}Sr_xCo₂Fe₂₄O₄₁ Z-type hexaferrite by Mössbauer spectroscopy. J. Lim¹ and C. Kim¹ I. Kookmin University, Seoul, Korea

BR-15. Preparation and Application on Antenna of Soft Ferrite Core for Wireless Sensor Networks. L. Li^{1,2}, Y. Fang^{3,4} and Y. Liu^{1,2} I. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing; 2. Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing; 3. Research Institute of Functional Materials, China Iron and Steel Research Institute, Beijing; 4. Beijing Engineering Laboratory of Advanced Metallic Magnetic Materials and Preparation Techniques, Beijing

PLENARY HALL B

TUESDAY AFTERNOON 1:30

Session BS MAGNETOCALORIC MATERIALS II (Poster Session)

Julia Lyubina, Co-Chair Evonik Industries AG Fengxia Hu, Co-Chair Institute of Physics, Chinese Academy of Sciences

BS-01. Tailoring of magnetic properties in Heusler-type NiMnGa glass-coated microwires. V. Zhukova^{1,3}, V. Chernenko^{4,2}, M. Ipatov^{1,3} and A. Zhukov^{1,2} 1. Department of Material Physics, Basque Country University, San Sebastian, Spain; 2. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; 3. Dpto. de Física Aplicada, EUPDS, University of Basque Country (UPV/ EHU), San Sebastian, Spain; 4. BCMaterials & University of Basque Country (UPV/EHU), Bilbao, Spain

Investigation of magnetic properties of Sr doped Ba_{3-x}Sr_xCo₂Fe₂₄O₄₁ Ztype hexaferrite by Mössbauer spectroscopy

Jung Tae Lim, and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul, Repulic of Korea;

INTRODUCTION

Recently, the magnetoelectric (ME) effect observed in some of spiral magnets has been extensively studied. Especially, Z-type hexagonal Ba_{3-x}Sr_xCo₂Fe₁₂O₂₂ show ME effect via a complex helical spin structures such as heliconicalmagnet and transverse conicalmagnet [1,2]. Also, Z-type hexaferrite has been considered for microwave application due to high cut-off frequency and high permeability at GHz [3]. Their properties are strongly affected by the hyperfine distribution in hexagonal structure.

EXPERIMENT PROCEDURES

The samples of polycrystalline $Ba_{3-x}Sr_xCo_2Fe_{24}O_{41}$ (x = 0.0, 0.5, 1.0, 1.5) were synthesized by the solid-state reaction method. The high purity $BaCO_3$ (99.98%), $SrCO_3$ (99.995%), CoO (99.99%), and Fe_2O_3 (99.995%) powders were used as the starting materials, and were mixed with the appropriate stoichiometric ration for Z-type hexaferrite. The mixture was ground, and calcined at 1000 °C. The calcined samples were pressed into a cylindrical pellet, and sintered at 1200 °C. Finally, the samples were slowly heated at a rate of 2 °C/min to 1200 °C, and sintered again at 1250 °C.

The crystallographic and magnetic properties of $Ba_{3-x}Sr_xCo_2Fe_{24}O_{41}$ (x = 0.0, 0.5, 1.0, 1.5) samples were investigated by using x-ray diffractometer (XRD) with Cu-K α (λ = 1.5406 Å) radiation, vibrating sample magnetometer (VSM), and Mössbauer spectrometer. In order to separate the sub-lattice lines, Mössbauer spectra were obtained in the external magnetic fields range from 0 to 50 kOe.

III. RESULTS AND DISCUSSION

The results of XRD patterns analyzed by Rietveld refinement of $Ba_{3-x}Sr_xCo_2Fe_{24}O_{41}$ (x = 0.0, 0.5, 1.0, 1.5) at 295 K, samples were found to be single-phased with the Bragg factor (R_B) and structure factor (R_F) less than 5 %. The crystalline structure was confirmed to be hexagonal structure with the space group $P6_3/mmc$. The lattice constants (a_0 , c_0), and unit cell volume (V_u) of samples decrease with increasing Sr ions contents, because the ionic radius of Ba^{2+} ions (r = 1.49 Å) are larger than the ionic radius Sr^{2+} ions (r = 1.32 Å) does.

From the applied-field dependent hysteresis curves under 10 kOe at 295 K, the saturation magnetization (M_s) and coercivity (H_c) of Ba_{3-x}Sr_xCo₂Fe₂₄O₄₁ (x = 0.0, 0.5, 1.0, 1.5) samples were found to be $M_s = 50.90$, 45.59, 44.98, 44.83 emu/g and $H_c = 37.10$, 40.24, 40.41, 40.67 Oe, respectively.

Base on the zero-field-cooled (ZFC) magnetization curves under 100 Oe between 4.2 and 300 K, all samples showed spin transition (T_s). The T_s decrease from 230 for x = 0.0 to 135 K for x = 1.5 with increasing Sr ion contents due to the reduction of planar anisotropy with the difference in ionic radius of Ba²⁺ and Sr²⁺ ions.

The zero-field Mössbauer spectra of the samples were taken at various temperatures ranging from 4.2 to 750 K and analyzed the spectra below $T_{\rm C}$ as six distinguishable sextets due to superposition of ten-sextets for Fe sites corresponding to the Z-type hexagonal ferrite. Isomer shift values of all samples show that the charge states are Fe³⁺ high spin. In addition, all samples has shown abrupt changes in the hyperfine field ($H_{\rm hf}$) and electric quadrupole shift ($E_{\rm Q}$) around $T_{\rm s}$. Also, From the Mössbauer spectra of all samples taken at 4.2 K with applied field parallel to the direction of γ -ray emission ranging from 0 to 50 kOe, Mössbauer spectra under zero external magnetic field show overlapped absorption lines, while Mössbauer spectra show well-distinguished 2-site absorption lines with increasing external magnetic field.

Reference

[1] S. H. Chun, Y. S. Chai, B.-G. Jeon, H. J. Kim, Y. S. Oh, I. Kim, H. Kim, B. J. Jeon, S. Y. Haam, J.-Y. Park,

S. H. Lee, J.-H. Chung, J.-H. Park, and K. H. Kim, Phys. Rev. Lett 108, 177201 (2012).

[2] M. Soda, T. Ishikura, H. Nakamura, Y. Wakabayashi, and T. Kimura, Phys. Rev. Lett 106, 087201 (2011).

[3] B. W. Li, Y. Shen, Z. X. Yue, and C. W. Nan, Appl. Phys. Lett. 89, 132504 (2011).